R Projects For Dummies
Book image
Explore Book Buy On Amazon
Here, you learn about books and websites that help you learn more about R programming. Without further ado. . .

Interacting with users

If you want to delve deeper into R applications that interact with users, start with this tutorial by shiny guiding force Garrett Grolemund.

For a helpful book on the subject, consider Chris Beeley’s web Application Development with R Using Shiny, 2nd Edition (Packt Publishing, 2016).

Machine learning

For the lowdown on all things Rattle, go directly to the source: Rattle creator Graham Williams has written Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery (Springer, 2011). Check out the companion website.

The University of California-Irvine Machine Learning Repository plays such a huge role in the R programming world. Here’s how its creator prefers that you look for the material:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Thank you, UCI Anteaters!

If machine learning interests you, take a comprehensive look at the field (under its other name, “statistical learning”): Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani’s An Introduction to Statistical Learning with Applications in R (Springer, 2017).

An Introduction to Neural Networks, by Ben Krose and Patrick van der Smagt, is a little dated, but you can get it for the low, low price of nothing:

After you download a large PDF, it’s a good idea to upload it into an ebook app, like Google Play Books. That turns the PDF into an ebook and makes it easier to navigate on a tablet.


The R-bloggers website has a nice article on working with databases.

Of course, R-bloggers has terrific articles on a lot of R-related topics!

You can learn quite a bit about RFM (Recency Frequency Money) analysis and customer segmentation at www.putler.com/rfm-analysis.

Maps and images

The area of maps is a fascinating one. You might be interested in something at a higher level. If so, read Introduction to visualising spatial data in R by Robin Lovelace, James Cheshire, Rachel Oldroyd (and others).

David Kahle and Hadley Wickham’s ggmap: Spatial Visualization with ggplot2 is also at a higher level.

Fascinated by magick? The best place to go is the primary source. Check it out.

About This Article

This article is from the book:

About the book author:

Joseph Schmuller, PhD, is a veteran of more than 25 years in Information Technology. He is the author of several books, including Statistical Analysis with R For Dummies and four editions of Statistical Analysis with Excel For Dummies. In addition, he has written numerous articles and created online coursework for Lynda.com.

This article can be found in the category: