Hobby Farming Articles
Living off the land...and loving it! Learn how to create a healthy, happy environment for your animal friends, whether they're clucking, buzzing, or bleating.
Articles From Hobby Farming
Filter Results
Article / Updated 10-28-2024
During summer months, about 60,000 or more bees reside in a healthy hive. And while you may think all of those insects look exactly alike, the population actually includes two different female castes (the queen and the workers) and the male bees (drones). Each type has its own characteristics, roles, and responsibilities. Upon closer examination, the three look a little different. If you're a beekeeper, it's important to know one from the other. These are the three types of bees in the hive: worker, drone, and queen. Her majesty, the queen Let there be no mistake about it — the queen bee is the heart and soul of the colony. There is only one queen bee in a colony. She is the reason for nearly everything the rest of the colony does. The queen is the only bee without which the rest of the colony cannot survive. Without her, your hive is sunk. A good-quality queen means a strong and productive hive. And for some real fun, try raising your own queens from your best performing hives. As a beekeeper, on every visit to the hive you need to determine two things: “Do I have a queen?” and “Is she healthy?” The queen is the largest bee in the colony, with a long and graceful body. She is the only female with fully developed ovaries. The queen’s two primary purposes are to produce chemical scents that help regulate the unity of the colony and to lay eggs — and lots of them. She is, in fact, an egg-laying machine, capable of producing more than 1,500 eggs a day at 30-second intervals. That many eggs are more than her body weight! The other bees pay close attention to the queen, tending to her every need. Like a regal celebrity, she’s always surrounded by a flock of attendants as she moves about the hive (see the image below). Yet, she isn’t spoiled. These attendants are vital because the queen is incapable of tending to her own basic needs. She can neither feed nor groom herself. She can’t even leave the hive to relieve herself. And, so, her doting attendants take care of her basic needs while she tirelessly goes from cell to cell doing what she does best: lay eggs. A queen and her attentive attendants The gentle queen bee has a stinger, but it is rare for a beekeeper to be stung by a queen bee. I have handled many queen bees and have never been stung by any of them. In general, queen bees use their stingers only to kill rival queens that may emerge or be introduced into the hive. The queen can live for two or more years, but replacing your queen after a season or two ensures maximum productivity and colony health. Many seasoned beekeepers routinely replace their queens every year after the nectar flow. This practice ensures that the colony has a new, energetic, and fertile young queen each season. You may wonder why you should replace the queen if she’s still alive. That’s an easy one: As a queen ages, her egg-laying capability slows down, which results in less and less brood each season. Less brood means a smaller colony. And a smaller colony means a lackluster honey harvest for you. As a beekeeper, your job is to anticipate problems before they happen. An aging queen — more than a year old — is something that you can deal with by replacing her after checking her egg-laying, before you have a problem resulting from a poorly performing queen. The industrious little worker bee The majority of the hive’s population consists of worker bees. Like the queen, worker bees are all female. Worker bees that are younger than 3 weeks old have working ovaries and can lay eggs, but they are not fertile, as the workers never mate and, therefore, lack sperm to fertilize eggs. Workers also look different than the queen. They are smaller, their abdomens are shorter, and on their hind legs they possess pollen baskets, which are used to tote pollen back from the field. Like the queen, the worker bee has a stinger. But her stinger is not a smooth syringe like the queen’s. The stinger is three-shafted, with each shaft having barbs (resembling a fish hook). The barbs cause the stinger, venom sack, and a large part of the bee’s gut to remain in a human victim — a Kamikaze effort to protect the colony. Only in mammals (such as humans) does the bee’s stinger get stuck. The worker bee can sting other insects again and again while defending its home. The life span of a worker bee is a modest six weeks during the colony’s active season. However, worker bees live longer (four to eight months) during the less-active winter months. These winter workers are loaded with protein and are sometimes referred to as “Fat Bees.” The term “busy as a bee” is well earned. Worker bees do a considerable amount of work, day in and day out. They work as a team. Life in the hive is one of compulsory cooperation. What one worker could never do on her own can be accomplished as a colony. During the busy season, the worker bees literally work themselves to death. The specific jobs and duties they perform during their short lives vary as they age. Understanding their roles will deepen your fascination and appreciation for these remarkable creatures. From the moment a worker bee emerges from her cell, she has many and varied tasks clearly cut out for her. As she ages, she performs more and more complex and demanding tasks. Although these various duties usually follow a set pattern and timeline, they sometimes overlap. A worker bee may change occupations, sometimes within minutes, if there is an urgent need within the colony for a particular task. They represent teamwork and empowerment at their best! Initially, a worker’s responsibilities include various tasks within the hive. At this stage of development, worker bees are referred to as house bees. As they get older, their duties involve work outside of the hive, as field bees. House bees The jobs house bees do (described in the following sections) are dependent on their age. Housekeeping (days 1 to 3) A worker bee is born with the munchies. Immediately after she emerges from the cell and grooms herself, she engorges herself with pollen and honey. Following this binge, one of her first tasks is cleaning out the cell from which she just emerged. This cell and other empty cells are cleaned and polished and left immaculate to receive new eggs or to store nectar and pollen. Undertaking (days 3 to 16) The honey bee hive is one of the cleanest and most sterile environments found in nature. Preventing disease is an important early task for the worker bee. During the first couple weeks of her life, the worker bee removes any bees that have died and disposes of the corpses as far from the hive as possible. Similarly, diseased or dead brood are quickly removed before becoming a health threat to the colony. Should a larger invader (such as a mouse) be stung to death within the hive, the workers utilize propolis to deal with that situation. Obviously, a dead mouse is too big for the bees to carry off. So, the workers completely encase the corpse with propolis (a brown, sticky resin collected from trees and sometimes referred to as bee glue). Propolis has significant antibacterial qualities. In the hot, dry air of the hive, the hermetically sealed corpse becomes mummified and is no longer a source of infection. The bees also use propolis to seal cracks and varnish the inside walls of the hive. Working in the nursery (days 4 to 12) The young worker bees tend to their baby sisters by feeding and caring for the developing larvae. On average, nurse bees check a single larva 1,300 times a day. They feed the larvae a mixture of pollen and honey, and royal jelly — rich in protein and vitamins — produced from the hypopharyngeal gland in the worker bee’s head. The number of days spent tending brood depends on the amount of brood in the hive and the urgency of other competing tasks. Attending royalty (days 7 to 12) Because her royal highness, the queen bee, is unable to tend to her most basic needs herself, some of the workers do these tasks for her. They groom and feed the queen and even remove her excrement from the hive. These royal attendants also coax the queen to continue to lay eggs as she moves about the hive. Stocking the pantry (days 12 to 18) During this stage of their life, young worker bees take nectar from foraging field bees that are returning to the hive. These house bees deposit this nectar into cells earmarked for this purpose. They add an enzyme to the nectar and set about fanning the cells to evaporate the water content and turn the nectar into ripened honey. The workers similarly take pollen from returning field bees and pack the pollen into other cells. Both the ripened honey and the pollen, which is often referred to as bee bread, are food for the colony. Fanning (days 12 to 18) Worker bees also take a turn at controlling the temperature and humidity of the hive. During warm weather and during the honey flow season, you’ll see groups of bees lined up at one side of the beehive entrance, facing the hive. They fan furiously to draw air into the hive. Additional fanners are in position within the hives. This relay of fresh air helps maintain a constant temperature (93 to 95 degrees Fahrenheit [34 to 35 degrees Celsius]) for developing brood. The fanning also hastens the evaporation of excess moisture from the curing honey. The workers also perform another kind of fanning, but it isn’t related to climate control. It has more to do with communication. The bees have a scent gland located at the end of their abdomen called the Nasonov gland. You’ll see worker bees at the beehive entrance with their abdomens arched and the moist pink membrane of this gland exposed. They fan their wings to release this pleasant, sweet odor into the air. You can actually smell it sometimes as you approach the hive. The pheromone is highly attractive and stimulating to other bees and serves as an orientation message to returning foragers, saying: “Come hither, this is your hive and where you belong.” This helps direct other members of the colony back to the hive. Beekeepers can purchase synthetic queen-bee pheromone and use this chemical to lure swarms of bees into a trap. The captured swarm then can be used to populate a new hive. Becoming architects and master builders (days 12 to 35) Worker bees that are about 12 days old are mature enough to begin producing beeswax. These white flakes of wax are secreted from wax glands on the underside of the worker bee’s abdomen. They help with the building of new wax comb and in the capping of ripened honey and brood cells containing developing pupae. Some new beekeepers are alarmed when they first see these wax flakes on the bee. They wrongly think these white chips are an indication of a disease or mite problem. While the bees are working, the wax flakes will fall to the bottom. Nothing to be alarmed about. Guarding the home (days 18 to 21) The last task of a house bee before she ventures out is that of guarding the hive. At this stage of maturity, her sting glands have developed to contain an authoritative amount of venom. You can easily spot the guard bees at the hive’s entrance. They are poised and alert, checking each bee that returns to the hive for a familiar scent. Only family members are allowed to pass. Strange bees, wasps, hornets, and other creatures intent on robbing the hive’s vast stores of honey are bravely driven off. Bees from other hives are occasionally allowed in when they bribe the guards with nectar. These bees simply steal a little honey or pollen and then leave. Field bees When the worker bee is a few weeks old, she ventures outside the hive to perform her last and perhaps most important job — to collect the pollen and nectar that will sustain the colony. With her life half over, she joins the ranks of field bees until she reaches the end of her life. It’s not unusual to see field bees taking their first orientation flights. The bees face the hive and dart up, down, and all around the entrance. They’re imprinting the look and location of their home before beginning to circle the hive and progressively widening those circles, learning landmarks that ultimately will guide them back home. At this point, worker bees are foraging for pollen (see the figure), nectar, water, and propolis (resin collected from trees). Foraging bees visit 5 million flowers to produce a single pint of honey. They forage a 2- to 3-mile radius from the hive in search of food (even more, if necessary, for water), and propolis. That’s the equivalent of several thousand acres! So, don’t think for a moment that you need to provide everything they need on your property. They’re ready and willing to travel. Foraging is the toughest time for the worker bee. It’s difficult and dangerous work, and it takes its toll. They can get chilled as dusk approaches and die before they can return to the hive. Sometimes they become a tasty meal for a bird or other insect. You can spot the old girls returning to the hive. They’ve grown darker in color, and their wings are torn and tattered. This is how the worker bee’s life draws to a close, working diligently right until the end. The woeful drone This brings us to the drone, the male bee in the colony. Drones make up a relatively small percentage of the hive’s total population. At the peak of the season, their numbers may be only in the hundreds. You rarely find more than a thousand. New beekeepers often mistake a drone for the queen, because he is larger and stouter than a worker bee. But his shape is in fact more like a barrel (the queen’s shape is thinner, more delicate, and tapered). The drone’s eyes are huge and seem to cover his entire head. He doesn’t forage for food from flowers — he has no pollen baskets. He doesn’t help with the building of comb — he has no wax-producing glands. Nor can he help defend the hive — he has no stinger. He is not the queen or a worker — merely the drone. The drone gets a bad rap in many bee books. Described as lazy, glutinous, and incapable of caring for himself, you might even begin wondering what he’s good for. He mates! Procreation is the drone’s primary purpose in life. Despite their high maintenance (they must be fed and cared for by the worker bees), drones are tolerated and allowed to remain in the hive because they are needed to mate with a new virgin queen from another colony (when the old queen from that other colony dies or needs to be superseded). Mating occurs outside of the hive in mid-flight, 200 to 300 feet in the air. This location is known as the drone congregation area, and it can be a mile or more away from the hive. The drone’s big eyes come in handy for spotting virgin queens who are taking their nuptial flights. The few drones that do get a chance to mate are in for a sobering surprise. They die after mating. That’s because their sex organ fits something like a key into a lock so they can effectively discharge their sperm into the queen. The queen will mate with several drones during her nuptial flight. After mating with the queen, the drone’s most personal apparatus and a significant part of its internal anatomy is torn away, and it falls to its death, a fact that prompts empathetic groans from the men in my lectures and some unsympathetic cheers from a few women. Once the weather gets cooler and the mating season comes to a close, the workers do not tolerate having drones around. After all, those fellows have big appetites and would consume a tremendous amount of food during the perilous winter months. So, in cooler climates, at the end of the nectar-producing season the worker bees systematically expel the drones from the hive. Drones are literally tossed out the door. For those beekeepers who live in areas that experience cold winters, this is your signal that the beekeeping season is over for the year. Depending on where you live, the calendar of events for you and your bees varies depending on temperature ranges and the time of year.
View ArticleArticle / Updated 09-05-2023
What in the world did anyone do before cyberspace? Not even the most determined library search of years gone by would have turned up the plethora of bee-related resources that are only a click away on the web. Just enter the word "beekeeping" or "honey bees" into any of the search engines, and you'll come up with hundreds (even thousands) of finds. Like all things on the Net, many of these sites tend to come and go. A few are outstandingly helpful. Some are duds. Others have ridiculous information that may lead you to trouble. Each of the following sites is worth a visit. Apiservices — Virtual beekeeping gallery This European site, Apiservices, is a useful gateway to scores of other beekeeping sites: forums, organizations, journals, vendors, conferences, images, articles, catalogs, apitherapy, beekeeping software, plus much more. It can be accessed in English, French, Spanish, and German and is nicely organized. The Barefoot Beekeeper At the Barefoot Beekeeper, Phil Chandler offers lots of information on natural beekeeping and Top Bar hives, including a full set of plans and instructions on how to build your own Kenyan Top Bar hive. BeeHoo — The beekeeping directory BeeHoo is a comprehensive international beekeeping directory has many helpful articles, information sheets, instructional guides, resources, photos, and links of interest for the backyard beekeeper. The site is viewable in English or in French and is definitely worthy of a bookmark. Beemaster Forum A popular international beekeeping forum designed to entertain and educate anyone with an interest in bees or beekeeping. Here you can share images, send messages, and participate in live forums. This secure site is moderated and is completely family friendly. It was created and is maintained by hobbyist beekeeper John Clayton. Bee-Source.com Bee-Source includes a nicely organized collection of bee-related articles, resources, and links, and it features sections on bees in the news, editorials, an online bookstore, a listing of beekeeping suppliers, plans for building your own equipment, discussion groups, bulletin boards, and much more. Facebook — Top Bar Beekeeping Top Bar Beekeeping is a closed group on Facebook that has more than 3,200 members with more joining all the time. There are some lively discussions that can provide you with basic information and help you start thinking more about a subject. As with all Facebook pages, the information is mostly anecdotal, so checking things out is a must before you adapt any techniques being promoted. Mid-Atlantic Apiculture Research and Extension Consortium (MAARAC) MAARAC is a research and extension consortium is packed with meaningful information for beekeepers worldwide. Download extension publications; find out more about videos, slide shows, software, and courses that are available from the organization; and read about honey-bee research currently underway. You can also discover important local beekeeping events planned in the Mid-Atlantic region and other national and international meetings of importance to beekeepers. National Honey Board This nonprofit government agency supports the commercial beekeeping industry. The folks at NHB are enormously helpful and accommodating. The well-designed site is a great source for all kinds of information about honey. You'll find articles, facts, honey recipes, and plenty of beautiful images.
View ArticleArticle / Updated 06-01-2023
When you extract honey from a hive, the wax cappings that you slice off represent your major wax harvest for the year. There's also the excess comb you remove during each routine inspection of a hive. Save all of this wax. You'll probably get 1 or 2 pounds of wax for every 100 pounds of honey that you harvest, plus whatever burr comb you remove. You can melt down and clean this wax for all kinds of terrific uses, such as making candles, furniture polish, hand cream, lip balm, and so on. Pound for pound, wax is worth more than honey, so it's definitely worth a bit of effort to reclaim this prize and start some fun, bee-related craft projects! The solar wax melter The solar wax melter (see the figure below) is a great way to render the beeswax to use for other purposes. Essentially, you melt the raw wax into a block that you can refine for various craft projects. And, best of all, this device is all natural, using no electricity — only the awesome power of the sun. Following, I provide the materials list, cut list, and instructions for building a solar beeswax melter. Vital stats for the solar wax melter Size: 27-3/4 inches x 189/16 inches x 18-1/2 inches. Capacity: Depending on the size of the pan you use in the melter, this design should provide ample capacity to render up to 6 to 8 pounds of wax at a time. Degree of difficulty: The butt joinery is the simplest method for assembling wood, and this design has one straightforward dado cut. All in all, an easy build. Cost: Using scrap wood (if you can find some) would keep material costs of this design minimal, but even if you purchase the recommended wood, hardware, glazing, and fasteners, you can likely build this solar wax melter for less than $75. The most expensive single item is the greenhouse glazing. Materials list for the solar wax melter The following table lists what you'll use to build your solar wax melter. In most cases, you can substitute other lumber as needed or desired. I've included a few more screws and nails than you'll use. You might lose a few along the way — better to have a few extras on hand and save another trip to the hardware store. 1, 10' length of 1" x 3" knotty pine lumber A 2-pound size disposable aluminum loaf pan (approximately 8" x 4" x 2") 60, #6 x 1-3/8" deck screws, galvanized, #2 Phillips drive, flat-head with coarse thread and sharp point 2, 4' x 4' sheets of 3/4" exterior plywood A large, disposable aluminum roasting pan (approximately 17" x 14" x 3") 8, 5/32" x 1-1/8" flat-head, diamond-point wire nails 1, 2' x 4' polycarbonate dual-wall 6mm greenhouse panel (available from greenhouse supply stores and sometimes found on online auction sites like eBay) A quart of flat black exterior paint (either latex or oil) Optional: weatherproof wood glue Use the recommended "plastic" (polycarbonate) glazing for the window. Not only does it work well, it also avoids all the potential dangers associated with fragile window glass. Keep in mind that this melter typically sits on the ground, and a playful child or bouncing pet could be seriously injured stepping on a glass top. Invest in safety and use the polycarbonate greenhouse panel. Its dual-wall design is also more effective at retaining heat than a single pane of glass. Cut list for the solar wax melter The following breaks down the solar wax melter into its individual components and provides instructions on how to cut those components. Lumber in a store is identified by its nominal size, which is its rough dimension before it's trimmed and sanded to its finished size at the lumber mill. The actual finished dimensions are always slightly different from the nominal dimensions. For example, what a lumberyard calls 1 inch x 3 inch lumber is in fact 3/4 inch x 2-1/2 inch. The Material column in the following table lists nominal dimensions and the Dimensions column lists the actual, final measurements. Floor assembly Quantity Material Dimensions Notes 3 1" x 3" knotty pine 6-1/2" x 1" x ¾" These are the retaining cleats that hold the aluminum pans in position. 1 3/4" exterior plywood 18-1/2" x 15" x 3/4" This is the upper floor. 1 3/4" exterior plywood 15" x 9-1/2" x 3/4" This is the front panel. 1 3/4" exterior plywood 15" x 9-1/4" x 3/4" This is the lower floor. 1 3/4" exterior plywood 15" x 6-3/4" x 3/4" This is the rear panel. 1 3/4" exterior plywood 15" x 2-1/2" x ¾" This is the riser. Inclined side panels Quantity Material Dimensions Notes 2 3/4" exterior plywood 27" x 17-1/2" x 10-1/4" x ¾" These are the inclined side panels. To create an incline of approximately 15 degrees, the front edge of the panel is 10-1/4" high and the rear edge is 17-1/2" high. Glazed top assembly Quantity Material Dimensions Notes 2 1" x 3" knotty pine 27-1/2" x 2-1/2" x 3/4" These are the long rails of the frame. Dado a 5/16" wide by 3/8" deep groove along the entire length of what will be the inside of each rail. Position the bottom edge of the dado 1-1/2" from what will be the bottom edge of the rail. 2 1" x 3" knotty pine 18-1/2" x 2-1/2" x ¾" These are the short rails of the frame. Dado a 5/16" wide by 3/8" deep groove along the entire length of what will be the inside of each rail. Position the bottom edge of the dado 1-1/2" from what will be the bottom edge of the rail. 1 Polycarbonate dual-wall 6mm greenhouse panel 28-1/8" x 17-5/8" x ¼" (6mm) This is the window. Cut it to size using your table saw and a general purpose blade. Putting it together After you've cut all the pieces of your solar wax melter, it's time to clear a good work space and put all this stuff together. You start with the floor of the solar wax melter and work your way to the top. Attach the riser to the lower and upper floors. First use the deck screws and a power drill with a #2 Phillips head bit to attach the lower floor to the riser. Doing this is easiest with these elements of the floorboard assembly turned upside down on your work surface (the screws go through what will be the underside of the lower floorboard and into the lower edge of the vertical riser). This is a simple butt joint. Just line up the edges so that they're flush with each other. Now flip these two components right-side up on the worktable and use deck screws to attach the upper floorboard to the top edge of the vertical riser; just line up the edges so that they're flush with each other. Throughout the entire floor assembly, consider using a weatherproof wood glue in addition to the screws. It helps make the structure as strong as possible. Apply a thin coat of glue wherever the wooden parts are joined together (the exception is the glazed top, which you do not want to glue, just in case you need to replace the glazing). The screws will go in easier if you first drill a 7/64-inch hole in each spot you plan to place a screw. The pre-drilling also helps prevent the wood from splitting. Refer to the earlier figures to determine where the screws go. Attach the cleats to the upper and lower floors. First use the nails and a hammer to attach the two cleats to the upper floorboard. Position the cleats flush with the front and side edges of the upper floorboard. You'll have a 2-inch gap left in the center (for the melted wax to flow through). A couple of nails per cleat will do the trick. See the following figure for the approximate placement of the nails. Now take the remaining cleat and attach it to the lower floorboard using the nails. To determine the exact placement, place your smaller disposable aluminum loaf pan on the bottom floor, as shown in the following figure. This helps you determine where to attach the cleat (the dimensions of these pans vary from brand to brand). The objective is to position this cleat so that the pan doesn't slide out of position. After all, it will be on a 15 degree incline. This pan collects the melting wax as it flows from the larger pan that sits on the upper floor. A couple of nails per cleat should the trick. Attach the floor assembly to the front and rear vertical panels. Turn the entire floor assembly over and attach the front and rear vertical panels to the front and rear of the floor assembly. The large panel attaches to the lower floor, and the smaller panel attaches to the upper floor. Use deck screws to attach the panels to the floor assembly. The screws go through the lower and upper floors and into the edges of the vertical panels. These are simple butt joints. The edges of the pieces should be flush with each other. Precise placement isn't critical. Now flip the entire thing over again and proceed to the next step. Attach the side panels to the floor assembly. Use deck screws to attach the floor assembly (which now includes the front and rear panels) to the side panels. The screws go through the side panels and into the edges of the floor assembly. Note that the floor assembly is tilted within the side panels so that gravity will do its trick and direct the melting wax into the collection pan. You'll make life a lot easier if you first pre-drill 7/64 -inch guide holes in the side panels. Lay a side panel on the workbench and then position the edge of the entire floor assembly on the side panel (just as it will go when screwed together). Use a pencil to trace the outline of the floor assembly's edges on the side panel. Do the same thing for the other side panel. Now drill the guide holes in the side panels. This little step makes it a lot easier to correctly align and attach the floor assembly within the two side panels. Otherwise it will be a hit or miss exercise. Use the following figure to determine the approximate placement of screws. The objective is to make sure that screws go into the edges of all the critical components of the floor assembly: rear panel, upper floor, riser, lower floor, and front panel. Build the glazed top assembly. Use deck screws to attach one of the short rails to the two long rails. These are simple butt joints. You're essentially building a picture frame. Take care to align and match up the dado grooves; these are the channels into which the window panel fits. Use two screws per corner (avoid placing a screw where it may interfere with the dado groove). Now take the polycarbonate window panel and slide it into the dado grooves of the partially assembled frame. Assuming the glazed panel was cut perfectly "square," it will square up the frame nicely. Using two deck screws per corner, attach the remaining short rail to the long rails. Again, be careful to avoid placing a screw where it may interfere with the dado groove and the newly installed window panel. Using screws (versus nails) allows you to remove the glazed panel at a later date, should it ever need replacing. For this reason, do not use wood glue on the glazed top assembly. Paint all wooden surfaces matte black. To protect the wood and better retain solar heat, paint all the wood surfaces, inside and out, using a matte black exterior paint. Two or three coats will do the trick. Let each coat dry completely before adding the next. Place the aluminum pans inside the solar wax melter. Cut a 2-inch-wide flap centered along one of the long sides of the large roasting pan (see the following figures). This hole and flap allow the melting wax to flow into the smaller pan below. The larger roasting pan sits on the inclined upper floor, with the cut-out flap aligned with the gap between the two retaining cleats. Fill the large pan with your wax cappings and other harvested comb. The smaller loaf pan sits on the lower floor, snug against the riser and aligned to collect the melting wax from the larger pan above. Put the glazed top assembly on the solar wax melter. The removable top fits on and over the top of the wax melter (like a hat fits on a head). Position the entire unit so that the glazed top is exposed to the direct sun (facing south is best). Now all you need are some warm, sunny days and you'll soon have a lovely block of pure, natural beeswax. Time to make candles, furniture polish, and cosmetics!
View ArticleArticle / Updated 05-18-2023
In the autumn of 2006, a beekeeper in Florida filed the first report of a sudden and unexplained disappearance of his bees. They didn't die. They just packed up and left. More reports of heavy losses (mostly from commercial migratory beekeepers) quickly followed. In subsequent years, beekeepers have reported losing anywhere from 30 percent to 90 percent of their hives. Like a firestorm, this tragedy has swept across nearly all of the United States as well as some countries overseas. It has affected both commercial beekeepers and hobbyists. It is a far-reaching problem that has serious consequences. Colony collapse disorder (CCD) is characterized by the sudden and unexplained disappearance of all adult honey bees in the hive, usually in the fall. In one scenario, a few young bees and perhaps the queen may remain behind while the adults disappear. Or in another scenario, there may be no bees left in the hive. Honey and pollen are usually present, and there is often evidence of recent brood rearing. This abrupt evacuation is ordinarily highly unusual because bees are not inclined to leave a hive if there is brood present. Another puzzling characteristic is that opportunists (such as robbing bees from other hives, wax moths, and small hive beetles) are slow to invade colonies experiencing CCD. There are no adult bees present to guard the hive and lots of goodies to loot, yet these invaders stay clear. Hmmm. What do they know that the beekeeper doesn't? Sometimes (rarely) bees abscond from a hive because conditions are too unpleasant to remain in the hive: too hot, too many pests, not enough food, no queen, and so on. But CCD is different from such absconding. Conditions don't appear to be unfavorable. And it's happening at an alarming rate. Colonies that experience CCD have the following characteristics: All or nearly all of the bees pack up and leave within a two- to four-week time period. But there are no dead adult bodies. In some instances the queen and a small number of young-aged survivor bees are present in the brood nest. There are no or very few dead bees in the hive or at the hive entrances. Capped brood is left behind. There is stored pollen and capped honey. Empty hives are not quickly invaded by opportunists (robbing bees, wax moths, small hive beetles, and so on).
View ArticleArticle / Updated 04-27-2023
If you're new to raising goats in your effort to live sustainably, you may not know that rumination is a good indicator of your goat's health. Because rumination is an essential part of how goats digest food, you can use cud-chewing habits as an indicator of goat health. A ruminating goat is eating and generating heat and energy. You can determine whether a goat is ruminating in two ways: by looking for cud-chewing and by listening to the goat's body. Digestion Goats are ruminants, which means that they have four stomach compartments and part of their digestive process includes regurgitating partially digested food and chewing it, called ruminating. This kind of digestive system needs a plant-based diet. The goat stomach consists of three forestomachs — the rumen, reticulum, and omasum — and a true stomach, the abomasum. The forestomachs are responsible for grinding and digesting hay, with the help of bacteria. The last compartment, the abomasum, is similar to the human stomach and digests most proteins, fats, and carbohydrates. A goat's rumen is located on the left side of the abdomen. You can watch this area or feel the side of the abdomen for movement. The rumen is the largest of the forestomachs, with a 1- to 2-gallon capacity. Rumination Signs The best way to determine whether a goat is ruminating and the strength and frequency of rumination is to listen. Often, ruminations are loud enough that you can hear them by just sitting next to the goat. If you can't hear them, put your head up to the left side of your goat's abdomen. If you still have trouble hearing ruminations, use a stethoscope. You can purchase an inexpensive stethoscope from a livestock supply catalog. Healthy ruminations are loud, sound kind of like a growling stomach, and occur about two or three times a minute. If they are weak or infrequent, give your goat some roughage and probiotics ("good" microbes given orally that protect against disease) to stimulate the rumen and to add to the rumen bacteria. Look around your herd to see whether each goat is chewing its cud. A good time for this is the early afternoon, when the goats are resting before their last go at the pasture for the day. Usually, at least two-thirds of them will be ruminating at the same time. Take a closer look at any goats that aren't chewing cud. If they don't look well in some other way, go up to them and listen for rumination sounds.
View ArticleArticle / Updated 09-01-2022
As part of your sustainable lifestyle, you'll want to be able to handle the routine birth of goats without calling in a vet. As the time nears for your goat to kid, you may get just as nervous as she does. She most likely can kid on her own, but you want to make sure that she has a clean, safe place to do so. Here are some tips on how to tell when your goat is getting close to kidding. Reading the ligaments A goat's rump is normally flat and solid, but as a doe gets to the end of pregnancy, that changes. Her tailbone becomes elevated, and the ligaments that connect it to her pelvis begin to stretch and loosen in preparation for the journey the kid (or kids) will make from her body. Sometimes you can tell that she will kid soon when you see a hollow on either side of the tail. One of the best ways to identify an impending kidding is to feel the two tail ligaments located on each side of the tail. Feel a doe that isn't pregnant and you will notice that those ligaments are very firm. The same will be true of a doe that is pregnant but not ready to kid. When these ligaments begin to get soft, and then completely vanish, you know that the goat is due to kid within 24 hours. You may make a mistake the first few times you try to read the ligaments, but over time you find the technique to be almost foolproof. Check the ligaments on a goat to tell whether she is going to kid. A few weeks before the doe is ready to kid, start feeling her ligaments routinely. One day you will find that they've turned to mush, and then you will know that it's time to put her in the kidding pen. Identifying other signs of impending kidding Besides softened ligaments, a doe will show other signs of kidding. Each doe might exhibit different signs, so keep an eye out for a change in behavior. Some other signs to look for include Isolation: The doe stands off from the crowd, sometimes seeming "spaced out." Mucus discharge: You may observe some whitish or yellowish discharge on her vulva. Firm, shiny udder: Her udder may become tight and filled up, called bagging up. Loss of appetite: She may become uninterested in food. Personality change: She may start fighting with other goats or become overly friendly to you when she was previously standoffish. Restlessness: She may lie down, then get up, paw at the ground, and just seem uncomfortable. When you have checked her ligaments and they're soft, or when you notice her exhibiting any or a combination of these signs around her due date, put her in the kidding pen, give her some fresh hay or alfalfa and observe her in this environment. When you have determined to your satisfaction that this is the day, turn on the baby monitor and leave her to focus on the mysterious process of having a kid.
View ArticleArticle / Updated 09-01-2022
If you're raising goats as part of a green, sustainable lifestyle, you'll want to milk them. Hand-milking a goat isn't difficult, but you do have to practice to be efficient at it. Some goats are like cows and have teats that are large enough for you to use all your fingers on them, while others are so small that you can only use three fingers. Never pull on the teat. This is not how milk is extracted, and it can cause injury to the mammary system. Wrap your thumb and forefinger around the teat to trap the milk and then gently squeeze it out. You need few supplies to milk a goat: Milk stand: Although people milk their goats in every situation imaginable, investing in a milk stand will make milking easier. Stainless steel bucket: Start with a six-quart bucket unless you're milking Nigerian Dwarves or Pygmies, which require a smaller one because they're shorter. Udder-washing supplies: You can use an old plastic coffee can with hot water and dish soap, rags made from towels cut into smaller pieces, and paper towels for drying. You need to wash the container after every milking and rinse with boiling water or a bleach solution (one part bleach to ten parts water). Teat sanitizing supplies: You need teat dip and cups or spray teat sanitizer, which you can purchase from a dairy supply company or feed store. Stainless steel strainer and milk filters: You can buy strainers and filters from a dairy supply company or feed store. Jars for milk storage: Half-gallon mason jars with plastic lids work great, because the plastic doesn't rust when it gets wet. To hand-milk a goat, follow these steps: Get the goat onto the milk stand and secure her in the stanchion with some grain for her to eat. Wash your hands. Clean the udder and teats with warm water and soap or sanitize with a wipe such as Milk Check Teat Wipes and dry them with a clean paper towel. Make sure to thoroughly dry your hands. Wrap your fingers and thumb around each teat to trap some milk in the teat and squeeze to quickly milk one or two squirts from each teat into a cup. This step allows you to check for abnormalities and removes any milk close to the surface of the teat that is more likely to be contaminated with bacteria. If the milk is abnormal, dispose of it after milking. Promptly milk the goat using a sanitized bucket, being careful not to pull on the teats. If you take too long to milk, the goat may start dancing or causing other mischief. When you think the udder is empty, massage the back and bottom of the udder and bump it gently with your fist in the front near the teats to encourage further let-down. Pour the milk through a clean, filtered strainer into a clean jar. Dip or spray the teats with a sanitizer such as Derma Sept Teat Dip. If you use dip cups, use a clean one for each goat to avoid cross-contamination. Return the goat to the herd. Have some fresh hay or alfalfa and fresh water available for the goat right after milking. She will eat and drink, instead of lying down and exposing an open teat orifice to bacteria. Clean the bucket and strainer and air dry. Rinse the bucket and strainer with tepid water right away. Wash with warm soapy water and rinse with boiling water or a solution of one part bleach to ten parts water. To practice milking without fear of injuring the goat, use a rubber glove filled with water and tied shut at the top. This will give you an idea of how closing the teat (finger) off from the udder (hand) traps the water in the finger, allowing you to capture the liquid by squeezing the teat.
View ArticleArticle / Updated 09-01-2022
Whether you're raising goats as pets or to supplement your green lifestyle, one of the most important parts of being a goat owner is making sure that they're healthy. You can do it when you're feeding, or just go out and watch them. The bonus is that hanging out with goats is relaxing! A healthy goat has shiny eyes and glossy hair and is curious and energetic, unless resting and chewing cud. If you're watching your goats and one of them seems a bit off, you can take a few simple steps to investigate further. Here are some simple clues to determine whether your goat is healthy: Posture A healthy goat usually has her head and tail up, stands erect, and holds her ears erect. That doesn't mean that every time a goat has her tail or ears down that she is sick. It's just a sign to be considered along with other signs. A goat that doesn't feel well will hunch with tail down and not be as responsive to external stimuli. A goat with an upset stomach, bloat, or urinary calculi will stretch out repeatedly, trying to relieve the pressure or discomfort or trying to pee. This abnormal posture is a sign that you need to check out the problem immediately. Goat cries If a goat is truly hungry or thirsty, his bleat is persistent. A sick goat sometimes moans or makes a stressed-out sounding cry, but more often you notice that she isn't crying but is away from the herd, suffering silently. Bucks in rut will make some of the craziest snorting, bleating noises you've ever heard. Some female goats (does) cry out in little short bursts when they're in heat. A doe that is giving birth (kidding) can also be quite noisy, although some approach the task silently. During the first stage of labor, they whine more than cry, especially if they want you there with them the whole time. Others are pretty discreet until it's time to push the baby out and then they let loose with a loud, long cry to tell you that it's time. Listen, and learn your goats' cries; the knowledge will serve you well. Temperature A goat's normal temperature is around 101 to 104 degrees Fahrenheit, depending on the individual goat. A goat's temperature can also go up or down throughout the day. On a hot day, you can expect some of your goats to have higher temperatures. A goat with a high temperature often has an infection and can quickly become dehydrated, while a goat with a low temperature (hypothermia) may have rumen trouble or be so sick that he is unable to stay warm. This goat needs to be warmed or he will die. To determine what's normal for each of your goats, take their temperature several times when they're healthy and note the number in their health records. Make sure you measure their temperatures on a hot day and a normal day so that you get an accurate baseline to compare with if a goat gets sick, as well as an idea of what variations might occur. Other signs to watch for A goat's posture, cries, and temperature will tell you a lot about their health. Here are some other behaviors and symptoms that should concern you: Not chewing cud Not getting up Pressing her head against wall or fence Not eating Not urinating or straining to urinate Not drinking Pale gray eyelids or gums Hot udder Limping or staggering Ears held oddly Isolating himself from the herd Grinding teeth Coughing Runny nose or eyes If you observe any of these signs in a goat, head to the vet right away.
View ArticleArticle / Updated 09-01-2022
If you've decided to raise goats to further your sustainable lifestyle, before you bring them home, you need to provide them shelter and bedding. Bedding for goats has two purposes: to provide a more comfortable area on which goats can walk and lie down and to absorb the goats’ urine and feces. You have several options for bedding: Straw: Straw is easy to store because it comes in bales, and it’s inexpensive. Wheat straw is preferable to other straws because it's easier to muck out when used, it's less dusty, and the goats like to eat it when it’s fresh. Wood shavings: Depending on where you live, wood shavings may be a better option. If you’re in a region with little rain, you won’t have a problem with storage, because you can even keep it outside. Wood pellets: Wood pellets absorb urine and odors but are too hard and uncomfortable by themselves for goats to use as bedding. They also are expensive. When the bedding gets saturated with water, urine, and feces, it becomes a perfect breeding ground for flies and parasites and must be mucked out. Mucking out a barn involves removing all the used bedding down to the floor and replacing it with clean bedding to prevent the spread of parasites and other problems. How frequently you need to muck your barn depends on the size of the area and how many goats you have. In the winter, if you live in a cold area, you can allow the muck to build up and add new bedding to the top. This provides extra heat for the goats from the composting bedding under the fresh layer. In the summer, you may be able to get away with mucking only once a month or so if your goats spend more time outdoors. If you have a large area to be mucked and are lucky enough to have a tractor or similar equipment, you can use that. But if you have only a backyard or a small homestead, you’ll have to muck by hand. To muck a barn by hand, you need Gloves Muck boots or old shoes A pitchfork A wheelbarrow Pace yourself. If you have a large area, start on one side and finish that first. You can do the other half the next day. It can help to have one or two people removing the used bedding and one running the wheelbarrow. Use gloves to prevent blisters and muck boots to keep your shoes and clothes clean. If the used bedding is very deep, to save your back, take it off in layers with your pitchfork rather than trying to lift huge chunks. Move all of the used bedding to a single pile in a place where goats won’t be tempted to play on it. The pile may seem high at first, but with rain and time, it will shrink down to nice compost. Some people cover their muck pile with a tarp to aid in composting. Because goat manure doesn’t burn plants like chicken manure does, you can put it directly on the garden, if you choose.
View ArticleArticle / Updated 09-01-2022
Before you bring your goats home, you need to build them a shelter. Goatkeepers have come up with a lot of different ideas for goat shelters. These can range from a "Taj Mahal," if you have space and a lot of money to spend, to a very simple shelter when you don't have land or money. Before you build your shelter, find a flat, dry area where the shelter will sit level. Don't plan a shelter next to a fence, or your goats will soon be on the other side of the fence. They love to jump on things! Here are some ideas for simple economical goat shelters that you can build: Used pallets: Build a simple three-sided shelter made from wood pallets covered with plywood. You can get free pallets from factories, building sites, large farms, and farm stores. You need to purchase two-by-fours, plywood, and roofing materials. The shelter shown here has a wood floor and a roof made from leftover metal roofing. Two to four medium-sized goats can sleep comfortably in this shelter out of the rain or sun. Old roofing material and pallets can become a sleeping shelter for goats. Cattle panel and tarp Quonset hut: This kind of shelter can work well for meat goats in a milder climate. It is open on both ends. Because the heavy cattle panel is strong enough to withstand snow, this shelter could work in harsher climates if you build it next to a barn as an adjunct shelter. Directions for building one are at southeastllamarescue.org. Dog run: A dog run works well for a few small goats in a back yard. You can purchase a cover made with a tarp and in colder weather you can put tarps all the way or partly around it. Or you can put in a dog house for sleeping quarters. If it is covered on top, and also because of its height, it provides nighttime security after you latch the door because other animals can't get over and into it. Wood frame shelter: You can make a wood frame shelter of any size and use metal or regular shingle roofing. As long as the area has proper drainage, you don't need to put a floor in the shelter. Just cover the dirt with plenty of bedding. You can make this kind of shelter with a door, partially enclosed on one side or open on one side.
View Article