Giving Cells Some Control: Gene Regulation - dummies

Giving Cells Some Control: Gene Regulation

By Rene Fester Kratz

Your cells do have some control over what happens with gene regulation. Even though your DNA is in control of the proteins your body makes, and those proteins are in charge of determining your traits, your cells do have some say in life. Because each one of your cells has a complete set of your chromosomes, your cells are able to practice gene regulation, meaning they can choose which genes to use (or not use) and when.

When a cell uses a gene to make a functional molecule, that gene is expressed in the cell. Gene regulation is the process cells use to choose which genes to express at any one time. (Scientists talk about gene regulation as cells turning genes “on” or “off.”)

Genes are regulated by the action of proteins that bind to DNA and either help or block RNA polymerase from accessing the genes. In your cells, proteins that help RNA polymerase bind to your genes are called transcription factors. They bind to special sequences on the DNA near genes’ promoters and make it possible for RNA polymerase to bind the promoter. Transcription and translation occur, producing the protein in the cell.

Gene regulation allows your cells to do two things: adapt to environmental changes and make it so that each cell type has a distinct role in the body.

Adapting to environmental changes

The world around you is always changing, which means you need to be able to respond to environmental signals in order to maintain your physiological balance. Gene regulation allows you to do just that. When your cells need to respond to environmental changes, they turn genes on or off to make the proteins needed for the response.

Suppose you’re getting too much sunlight. To protect your skin, the cells on the tip of your nose need to darken a bit by making more of the skin pigment melanin. The extra sunlight on your skin triggers certain proteins to bind to the genes needed for melanin production and help RNA polymerase access the genes. RNA polymerase reads the genes, making mRNA that contains the blueprints for the necessary proteins. The mRNA is translated, and the proteins are made.

The proteins do their jobs, and the skin on your nose turns a darker color. This example of how your skin gets darker illustrates how cells can access genes when they need them in order to respond to signals from the environment.

Becoming an expert through differentiation

You have more than 200 different types of cells in your body, including skin cells, muscle cells, and kidney cells. Each of these cells does a different job for your body, and like any good craftsman, each of these cell types requires the right tools for its job. To a cell, the right tool for the job is usually a specific protein. For instance, skin cells need lots of the protein keratin, muscle cells needs lots of contractile proteins, and kidney cells need water-transport proteins.

Cell differentiation is the process that makes cells specialized for certain tasks. Your differentiated cells have all the blueprints for all the tools because they each have a full set of your chromosomes; what makes them different from one another is which blueprints they use.

Cells differentiate from one another due to gene regulation. For example, when a sperm met an egg to form the cell that would become the future you, that first cell had the ability to divide and form all the different cell types your body needed. As that cell and its descendents divided, however, signals caused different groups of cells to change their gene expression.

Proteins in these cells bound to the DNA molecules, activating some genes and silencing others. As you grew and developed in your mother’s uterus, your cells became more and more distinct from each other. Some cells became part of your nervous tissue, whereas others formed your digestive tract. Each of these changes occurred as cells transcribed and translated the genes for the proteins that they needed to do their particular job.

After a cell becomes differentiated, it usually can’t go back. It’s specialized for a certain task and can’t access the genes for proteins that aren’t in its job description.