Trigonometry Workbook For Dummies
Book image
Explore Book Buy On Amazon

Here’s how you integrate a trig integral that contains sines and cosines where the power of sine is odd and positive. You lop off one sine factor and put it to the right of the rest of the expression, convert the remaining (even) sine factors to cosines with the Pythagorean identity, and then integrate with the substitution method where u = cos(x).

Remember that the Pythagorean identity tells you that, for any angle x,

image0.png

And thus,

image1.png
  1. Lop off one sine factor and move it to the right.

    image2.png
  2. Convert the remaining (even) sines to cosines by using the Pythagorean identity and simplify.

    image3.png
  3. Integrate with substitution, where u = cos(x).

    image4.png

You can save a little time in all substitution problems by just solving for du—as is done immediately above — and not bothering to solve for dx. You then tweak the integral so that it contains the thing du equals (–sin(x)dx in this problem). The integral contains a sin(x)dx, so you multiply it by –1 to turn it into –sin(x)dx and then compensate for that –1 by multiplying the whole integral by –1. This is a wash because –1 times –1 equals 1. This may not sound like much of a shortcut, but it’s a good time saver once you get used to it.

So tweak your integral:

image5.png

Now substitute and solve by the reverse power rule:

image6.png

It’s a walk in the park.

About This Article

This article is from the book:

About the book author:

Mary Jane Sterling taught algebra, business calculus, geometry, and finite mathematics at Bradley University in Peoria, Illinois, for more than 30 years. She is the author of several For Dummies books, including Algebra Workbook For Dummies, Algebra II For Dummies, and Algebra II Workbook For Dummies.

This article can be found in the category: