Advertisement
Online Test Banks
Score higher
See Online Test Banks
eLearning
Learning anything is easy
Browse Online Courses
Mobile Apps
Learning on the go
Explore Mobile Apps
Dummies Store
Shop for books and more
Start Shopping

String Theory: Branes are Required by M-Theory

Joe Polchinski's work proved that D-branes weren’t just a hypothetical construct allowed by string theory, but they were essential to any version of M-theory. Strongly motivated by Edward Witten’s proposal of M-theory, he began working intently on D-branes. Furthermore, he proved that the D-branes and p-branes were describing the same objects.

In a flurry of activity that would characterize the second superstring revolution, Polchinski showed that the dualities needed for M-theory only worked consistently in cases where the theory also contained higher dimensional objects. An M-theory that contained only 1-dimensional strings would be an inconsistent M-theory.

Polchinski defined what types of D-branes string theory allows and some of their properties. Polchinski’s D-branes carried charge, which meant that they interacted with each other through something similar to the electromagnetic force.

A second property of D-branes is tension. The tension in the D-brane indicates how easily an interaction influences the D-brane, like ripples moving across a pool of water. A low tension means a slight disturbance results in large effects on the D-brane. A high tension means that it’s harder to influence (or change the shape of) the D-brane.

If a D-brane had a tension of zero, then a minor interaction would have a major result — like someone blowing on the surface of the ocean and parting it like the Red Sea in The Ten Commandments. An infinite tension would mean the exact opposite: No amount of work would cause changes to the D-brane.

If you picture a D-brane as the surface of a trampoline, you can more easily visualize the situation. When the weight of your body lands on a trampoline, the tension in the trampoline is weak enough that it gives a bit, but strong enough that it does eventually bounce back, hurling you into the air.

If the tension in the trampoline surface were significantly weaker or stronger, a trampoline would be no fun whatsoever; you’d either sink until you hit the ground, or you’d hit a flat, immovable trampoline that doesn’t sink (or bounce) at all.

Together, these two features of the D-branes — charge and tension — meant that they aren’t just mathematical constructs, but are tangible objects in their own right. If M-theory is true, D-branes have the capacity to interact with other objects and move from place to place.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Advertisement
Advertisement

Inside Dummies.com

Dummies.com Sweepstakes

Win an iPad Mini. Enter to win now!