How Population Standard Deviation Affects Standard Error
How a Normal Distribution Affects the Shape of a Sampling Distribution
How to Find the Normal Approximation to the Binomial with a Large Sample n

How a Sampling Distribution Is Affected When the Distribution Is Not Normal

In statistics, if a population X has any distribution that is not normal, or if its distribution is unknown, you can’t automatically say the distribution of the sample means


has a normal distribution. But incredibly, you can use a normal distribution to approximate the distribution of


— if the sample size is large enough. This momentous result is due to what statisticians know and love as the Central Limit Theorem.

The Central Limit Theorem (abbreviated CLT) says that if X does not have a normal distribution (or its distribution is unknown and hence can’t be deemed to be normal), the shape of the sampling distribution of


is approximately normal, as long as the sample size, n, is large enough. That is, you get an approximate normal distribution for the means of large samples, even if the distribution of the original values (X) is not normal.

Most statisticians agree that if n is at least 30, this approximation will be reasonably close in most cases, although different distribution shapes for X have different values of n that are needed. The less “bell-shaped” or “normal looking” the distribution of the original values of X are, the larger the sample size for the sample means will need to be. The larger the sample size (n), the closer the distribution of the sample means will be to a normal distribution.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
How to Find Probabilities for a Sample Proportion
How to Find Binomial Probabilities Using a Statistical Formula
How to Find Probabilities for Z with the Z-Table
Statistics: Discrete and Continuous Random Variables
How to Define a Random Statistical Variable