Online Test Banks
Score higher
See Online Test Banks
Learning anything is easy
Browse Online Courses
Mobile Apps
Learning on the go
Explore Mobile Apps
Dummies Store
Shop for books and more
Start Shopping

Determining the Energy Levels of a Particle in a Box Potential

In quantum physics, to be able to determine the energy levels of a particle in a box potential, you need an exact value for X(x) — not just one of the terms of the constants A and B. You have to use the boundary conditions to find A and B. What are the boundary conditions? The wave function must disappear at the boundaries of the box, so

  • X(0) = 0

  • X(Lx) = 0

So the fact that


tells you right away that B must be 0, because cos(0) = 1. And the fact that X(Lx) = 0 tells you that X(Lx) = A sin(kxLx) = 0. Because the sine is 0 when its argument is a multiple of


this means that


And because


it means that


That's the energy in the x component of the wave function, corresponding to the quantum numbers 1, 2, 3, and so on. The total energy of a particle of mass m inside the box potential is E = Ex + Ey + Ez. Following


you have this for Ey and Ez:


So the total energy of the particle is E = Ex + Ey + Ez, which equals this:


And there you have the total energy of a particle in the box potential.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus

Inside Sweepstakes

Win $500. Easy.