Michael Surette

Michael G. Surette, PhD, is a Professor in the Department of Medicine at McMaster University, where he pushes the boundaries of microbial research.

Articles & Books From Michael Surette

Article / Updated 09-27-2022
The way that DNA encodes the instructions for proteins is through a set of four molecules called bases, each of which represents a letter of the genetic code (A = adenine, C = cytosine, G = guanine, and T = thymine). The bases are made of carbon and nitrogen rings and are bound to a sugar and a phosphate to form a nucleotideThe nucleotides are connected together to form a long chain with the bases pointing out.
Cheat Sheet / Updated 02-18-2022
When you're studying microbiology, you need to know the key differences between the three domains of life, how scientists name and classify organisms, and how scientists identify microorganisms.Differences among bacteria, archaea, and eukaryotic microorganismsThere are three domains of life: bacteria (also known as eubacteria), archaea, and eukarya.
Article / Updated 11-25-2019
Prokaryotic cells come in many different shapes and sizes that you can see under a microscope. A description of the shape of a cell is called the cell morphology. The most common cell morphologies are cocci (spherical) and bacilli (rods).Coccibacillus are a mix of both, while vibrio are shaped like a comma, spirilla are shaped like a helix (a spiral, sort of like a stretched-out Slinky), and spirochetes are twisted like a screw.
Microbiology For Dummies
Microbiology For Dummies (9781119544425) was previously published as Microbiology For Dummies (9781118871188). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product.    Microbiology is the study of life itself, down to the smallest particle Microbiology is a fascinating field that explores life down to the tiniest level.
Article / Updated 03-26-2016
The habitat is an important concept in biology and microbiology in particular because microorganisms are greatly affected by where they live. Microbial habitats — including soils, rivers, lakes, oceans, on the surface of living and dead things, inside other organisms, on man-made structures, and everything in between — provide nutrients and protect cells from harsh conditions.
Article / Updated 03-26-2016
To keep the many organisms on earth straight, in the 18th century the Swedish botanist Carl Linnaeus developed a simple nomenclature system to classify and name all organisms including bacteria. This system ranks all organisms using the following headings, shown with the example of the bacterium E. coli. Domain: Bacteria Phylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales (Order names always end in –iales.
Article / Updated 03-26-2016
There are three domains of life: Bacteria (also known as Eubacteria), Archaea, and Eukarya. The Bacteria and Archaea are made up entirely of microorganisms; the Eukarya contains plants, animals, and microorganisms such as fungi and protists. The Bacteria and Archaea have been grouped together and called Prokaryotes because of their lack of a nucleus, but the Archaea are more closely related to the Eukaryotes than to the Bacteria.
Article / Updated 03-26-2016
So, what are microorganisms exactly? Microorganisms are actually a diverse group of organisms. The fact that they’re micro isn’t even true of all microorganisms — some of them form multicellular structures that are easily seen with the naked eye. There are three main kinds of microorganisms, based on evolutionary lines: Bacteria are a large group of unicellular organisms that scientists loosely group as Gram-negative and Gram-positive, but in reality there are many different kinds.
Article / Updated 03-26-2016
Microbiology involves studying microorganisms from many different angles. Each perspective uses a different set of tools, from an ever-improving and changing toolbox. These include the following: Morphology: The study of the shape of cells. It is analyzed using stains and microscopy. Metabolism: How an organism gets energy from its environment and the waste it produces as a result.
Article / Updated 03-26-2016
Since the 19th century, there has been an explosion of great microbiological research, leading to many different branches of microbiology, all of which are both basic and applied in nature. Here’s a list of the different fields of microbiology that have developed since the discovery of microorganisms: Aquatic, soil, and agricultural microbiology study the microorganisms associated with aquatic (including wastewater treatment systems), soil, and agricultural environments, respectively.