Jennifer Stearns

Jennifer C. Stearns, PhD, is an Assistant Professor in the Department of Medicine at McMaster University. She studies how we get our gut microbiome in early life and how it can keep us healthy over time.

Articles & Books From Jennifer Stearns

Microbiology For Dummies
Microbiology For Dummies (9781119544425) was previously published as Microbiology For Dummies (9781118871188). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product.    Microbiology is the study of life itself, down to the smallest particle Microbiology is a fascinating field that explores life down to the tiniest level.
Cheat Sheet / Updated 02-18-2022
When you're studying microbiology, you need to know the key differences between the three domains of life, how scientists name and classify organisms, and how scientists identify microorganisms.Differences among bacteria, archaea, and eukaryotic microorganismsThere are three domains of life: bacteria (also known as eubacteria), archaea, and eukarya.
Article / Updated 03-26-2016
Microbiology involves studying microorganisms from many different angles. Each perspective uses a different set of tools, from an ever-improving and changing toolbox. These include the following: Morphology: The study of the shape of cells. It is analyzed using stains and microscopy. Metabolism: How an organism gets energy from its environment and the waste it produces as a result.
Article / Updated 03-26-2016
The message contained within an mRNA is converted to protein through translation, where the genetic code is deciphered into amino acids. The bases in mRNA are decoded in threes into codons, each of which encodes an amino acid; there are 20 amino acids. Several different codons encode the same amino acid. Making a protein involves stringing together many amino acids into a long chain, which then folds into the shape it needs to be in to perform its function.
Article / Updated 03-26-2016
Energy can’t be created or destroyed, so it has to be passed around. Within the cell, energy is reused and recycled very efficiently. The same is true outside the cell, where energy is stored in everything, including leaves and rocks on the ground. The trick is getting energy out from where it’s stored. Another way of thinking about energy is to think about electrons, which are the negatively charged part of atoms.
Article / Updated 03-26-2016
Amino acids have an amino group bonded to a carbon skeleton. Each amino acid has one or more special side groups or chains (R) that give it a specific structure or function. Making amino acids from scratch is very expensive in terms of energy, so microbes try their best to get them from their environment. When they can’t get them from outside, however, they use a kind of template method to reduce the amount of energy spent on different biosynthesis pathways.
Article / Updated 03-26-2016
The question of why to study microbiology is a good one — the impacts of microorganisms on your life may not be immediately obvious. But the truth is, microorganisms not only have a huge impact but are literally everywhere, covering all the surfaces of your body and in every natural and urban habitat. In nature, microorganisms contribute to biogeochemical cycling, as well as turnover of material in soil and aquatic habitats.
Article / Updated 03-26-2016
Since the beginning of their widespread use in 1943, antibiotics have saved countless lives and changed the way medicine is practiced. Before their discovery, people suffered or died from infectious diseases that today are a mere annoyance, like sexually transmitted diseases and post-operative infections. Today antibiotics are essential in treating life-threatening bacterial infections, like pneumonia and sepsis, and are used preventively in a number of medical procedures (like surgery) and treatments (like cystic fibrosis).
Article / Updated 03-26-2016
To keep the many organisms on earth straight, in the 18th century the Swedish botanist Carl Linnaeus developed a simple nomenclature system to classify and name all organisms including bacteria. This system ranks all organisms using the following headings, shown with the example of the bacterium E. coli. Domain: Bacteria Phylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales (Order names always end in –iales.
Article / Updated 03-26-2016
There are three domains of life: Bacteria (also known as Eubacteria), Archaea, and Eukarya. The Bacteria and Archaea are made up entirely of microorganisms; the Eukarya contains plants, animals, and microorganisms such as fungi and protists. The Bacteria and Archaea have been grouped together and called Prokaryotes because of their lack of a nucleus, but the Archaea are more closely related to the Eukaryotes than to the Bacteria.