| Algorithm | Python implementation | R implementation | 
| Adaboost | sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.AdaBoostRegressor | library(ada) : ada | 
| Gradient Boosting | sklearn.ensemble.GradientBoostingClassifier sklearn.ensemble.GradientBoostingRegressor | library(gbm) : gbm | 
| K-means | sklearn.cluster.KMeans sklearn.cluster.MiniBatchKMeans | library(stats) : kmeans | 
| K-nearest Neighbors | sklearn.neighbors.KNeighborsClassifier sklearn.neighbors.KNeighborsRegressor | library(class): knn | 
| Linear regression | sklearn.linear_model.LinearRegression sklearn.linear_model.Ridge sklearn.linear_model.Lasso sklearn.linear_model.ElasticNet sklearn.linear_model.SGDRegressor | library(stats) : lm library(stats) : glm library(MASS) : lm.ridge library(lars) : lars library(glmnet) : glmnet | 
| Logistic regression | sklearn.linear_model.LogisticRegression sklearn.linear_model.SGDClassifier | library(stats) : glm library(glmnet) : glmnet | 
| Naive Bayes | sklearn.naive_bayes.GaussianNB sklearn.naive_bayes.MultinomialNB sklearn.naive_bayes.BernoulliNB | library(klaR) : NaiveBayes library(e1071) : naiveBayes | 
| Neural Networks | sklearn.neural_network.BernoulliRBM (in version 0.18 of Scikit-learn, a new implementation of supervised neural network will be introducted) | library(neuralnet) : neuralnet library(AMORE) : train library(nnet) : nnet | 
| PCA | sklearn.decomposition.PCA | library(stats): princomp library(stats) : stats | 
| Random Forest | sklearn.ensemble.RandomForestClassifier sklearn.ensemble.RandomForestRegressor sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.ExtraTreesRegressor | library(randomForest) : randomForest | 
| Support Vector Machines | sklearn.svm.SVC sklearn.svm.LinearSVC sklearn.svm.NuSVC sklearn.svm.SVR sklearn.svm.LinearSVR sklearn.svm.NuSVR sklearn.svm.OneClassSVM | library(e1071) : svm | 
| SVD | sklearn.decomposition.TruncatedSVD sklearn.decomposition.NMF | library(irlba) : irlba library(svd) : svd | 
When working with R and Python for machine learning, you gain the benefit of not having to reinvent the wheel when it comes to algorithms. There is a library available to meet your specific needs — you just need to know which one to use. This table provides you with a listing of the libraries used for machine learning for both R and Python. When you want to perform any algorithm-related task, simply load the library needed for that task into your programming environment.



