Home

When to Use Variable Substitution with Integrals

Updated
2016-03-26 18:17:23
Share
Calculus II Workbook For Dummies
Explore Book
Subscribe on Perlego
Calculus II Workbook For Dummies
Explore Book
Subscribe on Perlego

Variable substitution comes in handy for some integrals. The anti-differentiation formulas plus the Sum Rule, Constant Multiple Rule, and Power Rule allow you to integrate a variety of common functions. But as functions begin to get a little bit more complex, these methods become insufficient. For example, these methods don’t work on the following:

image0.png

To evaluate this integral, you need some stronger medicine. The sticking point here is the presence of the constant 2 inside the sine function. You have an anti-differentiation rule for integrating the sine of a variable, but how do you integrate the sine of a variable times a constant?

The answer is variable substitution, a five-step process that allows you to integrate where no integral has gone before. Here are the steps:

  1. Declare a variable u and set it equal to an algebraic expression that appears in the integral, and then substitute u for this expression in the integral.

  2. Differentiate u to find du/dx.

    This gives you the differential du = ƒ'(x)dx.

  3. Make another substitution to change dx and all other occurrences of x in the integral to an expression that includes du.

  4. Integrate using u as your new variable of integration.

  5. Express this answer in terms of x.

About This Article

This article is from the book: 

About the book author:

Mark Zegarelli is a math tutor and author of several books, including Basic Math & Pre-Algebra For Dummies.