By Doug Lowe

There are several different ways to design a color organ circuit. Most of them rely on a special type of electronic component called a triac, which is essentially a transistor that’s designed to work with alternating current.

It has three terminals. Two are anodes, called A1 and A2, and the third is a gate. A voltage at the gate — either positive or negative — allows the anodes to conduct. The anodes are connected to the line load, and the gate voltage is derived from the audio input.

The audio input isn’t connected directly to the triac gate, however. Instead, most color organs use one of two techniques to isolate the audio input from the line-voltage side of the circuit. One method is to use a transformer. The other is to use an optoisolator, which is a single component that consists of an infrared LED and a photodiode or other light-sensitive semiconductor. Voltage on the LED causes the LED to emit light, which is detected by the photodiode and passed on to the output circuit.

The Velleman MK110 kit uses an optoisolator triac, in which the photosensitive semiconductor is actually a triac whose gate is stimulated by light rather than by voltage. The optoisolator is an integrated circuit in a 6-pin DIP package.

The figure shows a simplified schematic diagram for the circuit used by the Velleman MK110 kit. As you can see, the audio input is applied to the LED side of the optoisolator, controlled by a potentiometer, which lets you adjust the sensitivity of the circuit. The output from the optoisolator is applied to the gate of the triac, whose anodes are connected across the line voltage circuit. Thus, the volume of the audio input directly controls the voltage of the output circuit.

The schematic diagram for the color organ circuit.