How to Keep a Function of r Finite as r Goes to Infinity

In quantum physics, when finding the solution for a radial equation for a hydrogen atom, you need to keep the function of r finite as r approaches infinity to prevent the solution from becoming unphysical. You can accomplish this by putting constraints on the allowable values of the energy, and causing the solution for the radial equation to go to zero as r goes to infinity.

The problem of having

image0.png

go to infinity as r goes to infinity lies in the form you assume for f(r), which is

image1.png

The solution is to say that this power series must terminate at a certain index, which you call N. N is called the radial quantum number. So this equation becomes the following (note that the summation is now to N, not infinity):

image2.png

For this series to terminate, aN+1, aN+2, aN+3, and so on must all be zero. The recurrence relation for the coefficients ak is

image3.png

For aN+1 to be zero, the factor multiplying ak–1 must be zero for k = N + 1, which means that

image4.png

Substituting in k = N + 1 gives you

image5.png

And dividing by 2 gives you

image6.png

Making the substitution

image7.png

where n is called the principal quantum number, gives you

image8.png

This is the quantization condition that must be met if the series for f(r) is to be finite, which it must be, physically:

image9.png

Because

image10.png

the equation

image11.png

puts constraints on the allowable values of the energy.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Advertisement

Inside Dummies.com