Advertisement
Online Test Banks
Score higher
See Online Test Banks
eLearning
Learning anything is easy
Browse Online Courses
Mobile Apps
Learning on the go
Explore Mobile Apps
Dummies Store
Shop for books and more
Start Shopping

How to Find Binomial Coefficients

Depending on how many times you must multiply the same binomial — a value also known as an exponent — the binomial coefficients for that particular exponent are always the same. The binomial coefficients are found by using the

image0.png

combinations formula. If the exponent is relatively small, you can use a shortcut called Pascal's triangle to find these coefficients. If not, you can always rely on algebra!

Pascal's triangle, named after the famous mathematician Blaise Pascal, names the binomial coefficients for the binomial expansion. It is especially useful when raising a binomial to lower degrees. For example, if a sadistic teacher asked you to find (3x + 4)10, you probably wouldn't want to use Pascal's triangle; instead, you'd just use the algebraic formula described shortly. The figure illustrates this concept. The top number of the triangle is 1, as well as all the numbers on the outer sides. To get any term in the triangle, you find the sum of the two numbers above it.

Determining coefficients with Pascal's triangle.
Determining coefficients with Pascal's triangle.

Each row gives the coefficients to (a + b)n, starting with n = 0. To find the binomial coefficients for (a + b)n, use the nth row and always start with the beginning. For instance, the binomial coefficients for (a + b)5 are 1, 5, 10, 10, 5, and 1 — in that order.

If you need to find the coefficients of binomials algebraically, there is a formula for that as well. The rth coefficient for the nth binomial expansion is written in the following form:

image2.png

You may recall the term factorial from your earlier math classes. If not, here is a reminder: n!, which reads as "n factorial," is defined as

image3.png

You read the expression for the binomial coefficient

image4.png

as "n choose r." You usually can find a button for combinations on a calculator. If not, you can use the factorial button and do each part separately.

To make things a little easier, 0! is defined as 1. Therefore, you have these equalities:

image5.png

For example, to find the binomial coefficient given by

image6.png

substitute the values into the formula:

image7.png
  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Advertisement
Advertisement

Inside Dummies.com

Dummies.com Sweepstakes

Win an iPad Mini. Enter to win now!