How to Use the Limit Comparison Test to Determine Whether a Series Converges
How to Find the Partial Sum of an Arithmetic Sequence
Using the Ratio Test to Determine Whether a Series Converges

How to Analyze Absolute and Conditional Convergence

Many divergent series of positive terms converge if you change the signs of their terms so they alternate between positive and negative. For example, you know that the harmonic series diverges:

image0.png

But, if you change every other sign to negative, you obtain the alternating harmonic series, which converges:

image1.png

By the way, this series converges to ln 2, which equals about 0.6931.

An alternating series is said to be conditionally convergent if it’s convergent as it is but would become divergent if all its terms were made positive. An alternating series is said to be absolutely convergent if it would be convergent even if all its terms were made positive. And any such absolutely convergent series is also automatically convergent as it is.

Here’s an example. Determine the convergence or divergence of the following alternating series:

image2.png

If all these terms were positive, you’d have the familiar geometric series,

image3.png

which, by the geometric series rule, converges to 2. Because the positive series converges, the alternating series must also converge and you say that the alternating series is absolutely convergent.

The fact that absolute convergence implies ordinary convergence is just common sense if you think about it. The previous geometric series of positive terms converges to 2. If you made all the terms negative, it would sum to –2, right? So, if some of the terms are positive and some negative, the series must converge to something between –2 and 2.

Did you notice that the above alternating series is a geometric series as it is with

image4.png

(Recall that the formula for the sum of a geometric series works whenever r is between -1 and 1; it thus works for alternating series as well as for positive series.) The formula gives its sum:

image5.png
  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
How to Expand a Binomial Whose Monomials Have No Coefficients or Exponents
How to Expand a Binomial that Contains Complex Numbers
Determining If a Series Converges Using the Integral Comparison Test
How to Find the Value of an Infinite Sum in a Geometric Sequence
Using the Direct Comparison Test to Determine If a Series Converges
Advertisement

Inside Dummies.com