How a Sampling Distribution Is Affected When the Distribution Is Not Normal

In statistics, if a population X has any distribution that is not normal, or if its distribution is unknown, you can’t automatically say the distribution of the sample means

image0.png

has a normal distribution. But incredibly, you can use a normal distribution to approximate the distribution of

image1.png

— if the sample size is large enough. This momentous result is due to what statisticians know and love as the Central Limit Theorem.

The Central Limit Theorem (abbreviated CLT) says that if X does not have a normal distribution (or its distribution is unknown and hence can’t be deemed to be normal), the shape of the sampling distribution of

image2.png

is approximately normal, as long as the sample size, n, is large enough. That is, you get an approximate normal distribution for the means of large samples, even if the distribution of the original values (X) is not normal.

Most statisticians agree that if n is at least 30, this approximation will be reasonably close in most cases, although different distribution shapes for X have different values of n that are needed. The less “bell-shaped” or “normal looking” the distribution of the original values of X are, the larger the sample size for the sample means will need to be. The larger the sample size (n), the closer the distribution of the sample means will be to a normal distribution.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Advertisement

Inside Dummies.com

Dummies.com Sweepstakes

Win $500. Easy.