Online Test Banks
Score higher
See Online Test Banks
Learning anything is easy
Browse Online Courses
Mobile Apps
Learning on the go
Explore Mobile Apps
Dummies Store
Shop for books and more
Start Shopping

Exploring Signals and Systems: Core Concepts of Sampling Theory

Part of the Signals & Systems For Dummies Cheat Sheet

Sampling theory links continuous and discrete-time signals and systems. For example, you can get a discrete-time signal from a continuous-time signal by taking samples every T seconds. This article points out some useful relationships associated with sampling theory. Key concepts include the low-pass sampling theorem, the frequency spectrum of a sampled continuous-time signal, reconstruction using an ideal lowpass filter, and the calculation of alias frequencies.

The table of properties begins with a block diagram of a discrete-time processing subsystem that produces continuous-time output y(t) from continuous-time input x(t). This block diagram motivates the sampling theory properties in the remainder of the table.

The process of converting continuous-time signal x(t) to discrete-time signal x[n] requires sampling, which is implemented by the analog-to-digital converter (ADC) block. The block with frequency response


represents a linear time invariant system with input x[n] and output y[n]. The discrete-time signal y[n] is returned to the continuous-time domain via a digital-to-analog converter and a reconstruction filter.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus

Inside Sweepstakes

Win $500. Easy.