Advertisement
Online Test Banks
Score higher
See Online Test Banks
eLearning
Learning anything is easy
Browse Online Courses
Mobile Apps
Learning on the go
Explore Mobile Apps
Dummies Store
Shop for books and more
Start Shopping

Calculating the Density of an Object

In physics, density is the ratio of mass to volume. Any solid object that’s less dense than water floats. Density is an important property of a fluid because mass is continuously distributed throughout a fluid; the static forces and motions within the fluid depend on the concentration of mass (density) rather than the fluid’s overall mass.

Density is mass (m) divided by volume (V), so here’s the formula for density:

image0.png

In the MKS (Meter-Kilogram-Second) system, the units are kilograms per cubic meter, or kg/m3.

Say you have a whopper diamond with a volume of 0.0500 cubic meters (that’s a cube that’s about 1 foot on each side, so it’s truly a whopper). You measure its mass as 176.0 kilograms. So what’s its density?

Plugging in the numbers and doing the calculations gives you your answer:

image1.png

So the density of diamond is 3,520 kg/m3. That’s pretty dense.

You can see a sample of the densities of common materials in the table. Note that ice is less dense than water, so ice floats. Generally, solids and gases expand with temperature and therefore become less dense. This table includes the density of water at 4°C as a reference point because the density of water varies with temperature. The densities of the gases generally have a stronger dependence on temperature than the solids do, though.

Densities of Common Materials
Substance Density (kg/m3)
Gold (near room temperature) 19,300
Mercury (near room temperature) 13,600
Silver (near room temperature) 10,500
Copper (near room temperature) 8,890
Diamond (near room temperature) 3,520
Aluminum (near room temperature) 2,700
Blood (near body temperature) 1,060
Water (4 degrees Celsius) 1,000
Ice (0 degrees Celsius) 917
Oxygen (at 0 degrees Celsius, 101.325 kPa) 1.43
Helium (at 0 degrees Celsius, 101.325 kPa) 0.179
  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Advertisement
Advertisement

Inside Dummies.com

Dummies.com Sweepstakes

Win an iPad Mini. Enter to win now!