Determining the Angular Part of a Wave Function
Combine the Solutions for Small r and Large r in the Schrödinger Equation
How to Work with a Cubic Potential

Applying the Schrödinger Equation in Three Dimensions

In quantum physics, you can apply the Schrödinger equation when you work on problems that have a central potential. These are problems where you're able to separate the wave function into a radial part (which depends on the form of the potential) and an angular part, which is a spherical harmonic.

Central potentials are spherically symmetrical potentials, of the kind where V(r) = V(r). In other words, the potential is independent of the vector nature of the radius vector; the potential depends on only the magnitude of vector r (which is r), not on the angle of r.

The Schrödinger equation looks like this in three dimensions, where


is the Laplacian operator:


And the Laplacian operator looks like this in rectangular coordinates:


In spherical coordinates, it's a little messy, but you can simplify later. Check out the spherical Laplacian operator:


Here, L2 is the square of the orbital angular momentum:


So in spherical coordinates, the Schrödinger equation for a central potential looks like this when you substitute in the terms:


Take a look at the preceding equation. The first term actually corresponds to the radial kinetic energy — that is, the kinetic energy of the particle moving in the radial direction. The second term corresponds to the rotational kinetic energy. And the third term corresponds to the potential energy.

So what can you say about the solutions to this version of the Schrödinger equation? You can note that the first term depends only on r, as does the third, and that the second term depends only on angles. So you can break the wave function,


into two parts:

  • A radial part

  • A part that depends on the angles

This is a special property of problems with central potentials.

  • Add a Comment
  • Print
  • Share
blog comments powered by Disqus
Finding the Total Energy Equation for Three-Dimensional Free Particle Problems
How an Increase in r Affects the Appearance of Hydrogen Wave Functions
Solving the Wave Function of Small r and Large r Using the Schrödinger Equation
When to Use Spherical Coordinates Instead of Rectangular Coordinates
Calculate the Wave Function of a Hydrogen Atom Using the Schrödinger Equation