
Oracle Special EditionMaking Everything Easier!™

In-Memory Data Grids (IMDGs) bring
data caching and processing to the
application tier to make computer
systems faster, more reliable, and
highly scalable. Data grids allow
companies to meet the evolving
needs of their customers.

•	Understand	performance	
challenges	—	and	why	data	
caching	is	the	solution

•	Enhance	system	availability	
and	scalability	—	with	
clustering	and	a	fault-tolerant	
architecture

•	Keep	customers	happy	—		
and	create	new	ones	by		
giving	users	the	experience	
they	want

Use IMDGs for
increased scalability
and availability!

Oracle engineers hardware and
software to work together in the
cloud and in your data center. For
more information about Oracle
(NYSE:ORCL), visit oracle.com.

In-Memory
Data Grids

Michael Wessler, OCP & CISSP

Open the book
and find:

• How to integrate an
IMDG with your existing
infrastructure

• How to create systems
that scale to meet
workload requirements

• How to create highly
available systems

• Why caching on the
application tier
improves the user
experience

•	Scale	quickly	to	meet		
customer	demand

•	Save	costs	by	offloading	
shared	services

•	Increase	satisfaction	via	fast,	
fault-tolerant	infrastructure

Learn to:

Brought to you by

ISBN: 978-1-118-92141-8
Not for resale

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

by Michael Wessler, OCP & CISSP

In-Memor y
Data Grids

Oracle Special Edition

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In-Memory Data Grids For Dummies®, Oracle Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmit-
ted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A
Reference for the Rest of Us!, The Dummies Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and
may not be used without written permission. Oracle is a registered trademark of
Oracle International Corporation. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom
For Dummies book for your business or organization, please contact our Business Devel-
opment Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit
www.wiley.com/go/custompub. For information about licensing the For Dummies
brand for products or services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-118-92141-8 (pbk); ISBN 978-1-118-92310-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments
Senior Project Editor: Zoë Wykes

Business Development Representative:
Karen L. Hattan

Project Coordinator: Melissa Cossell

Special Help from Oracle: Craig Blitz,
Jens Eckels, Ayalla Goldschmidt,
Mike Lehmann, Cameron Purdy

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com

Table of Contents
Introduction .. 1
About This Book ..1
Icons Used in This Book ..1
Beyond the Book ..2
Where to Go from Here ...2

Chapter 1: Identifying Market Drivers 3
Understanding What’s Driving the Market4
Architecting for Today’s Challenges5
Why You Want to Scale Applications6

Understanding the urgent need7
Dynamic, Real-Time Systems..8
Offloading Shared Services ...9

Chapter 2: A Peek at Data Grid Use
Cases and How They Work 11
Evolving Challenges of Scalability12
Understanding Offloading ...13
Offloading in Action ...13
Scaling the Application Tier14
Leveraging Application Tier Scaling15
Exploring Real-Time Data..16
Accessing Real-Time Data in a High-Speed World17

Chapter 3: Leveraging the Benefits of IMDGs 21
Lowering Cost and Providing Better

Customer Experience ...22

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

iv

Providing a Highly Available, Scalable, and
Responsive Middleware Architecture23

Integrating IMDGs with Current Infrastructure24
Managing Application Server HTTP

Session State in IMDGs ...25
Using IMDGs in the Real World27

Chapter 4: Understanding Distributed
Caching and In-Memory Data Grids....................... 31
Fundamentals of Caching ..32

Boosting performance with caching32
Defining In-Memory Data Grids32

Querying Your Cache ..36
Processing and Eventing ...37

Processing ...37
Event-based processing ...37

Chapter 5: Ten (Okay, Eight) Things to Consider
when Adopting In-Memory Data Grids.................. 39
Ensuring That Your System Is

Suitable for IMDGs ..39
Supporting Distributed Computing40
Preparing for Special Sales Events40
Making a Good First Impression41
Examining Hardware Choices When

Building Your Cache ...41
Embracing a Single-System Image..............................42
Identifying Live Data ..43
Understanding That Change Is Here43

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

A
 ll businesses know that promoting a positive user
experience is critical to keeping your customers

happy and attracting new ones. How can IT support an
environment that is responsive and reliable even under
spikes in user demand? One proven solution is In-Memory
Data Grids (IMDGs). Leveraging IMDGs provides the
speed, reliability, and scaling required — yet often
lacking — in so many computer systems.

About This Book
In-Memory Data Grids For Dummies, Oracle Special
Edition, consists of five short chapters that identify
the requirements to be successful in a dynamic IT
world and to give customers the user experience they
demand. This book explores how IMDGs provide faster
and more stable service to customers while solving
difficult scaling and reliability challenges, and gives a
clear path to improving the customer experience with
IMDGs.

Icons Used in This Book
In this book, you occasionally see icons that call atten-
tion to important information. Here’s what to expect.

 This icon points out information that you’ll
want to remember over the next few months,
years, or until retirement!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

2

 You won’t see a lot of highly technical infor-
mation because I don’t want to give you a
headache, but you will see this icon a few
times.

 This denotes information that may make your
life a little easier if you follow the advice.
Odds are this information is included because
I didn’t heed it myself at one point!

 Learning from someone else’s mistakes is
better than making them yourself. This infor-
mation alerts you to things to watch out for
or areas that could cause problems.

Beyond the Book
Technology is always evolving, so in order to stay up to
date on the latest in Oracle In-Memory Data Grids prod-
ucts, here’s a website to visit: http://www.oracle.
com/us/products/middleware/cloud-app-
foundation/coherence/overview/index.html.

Where to Go from Here
This book isn’t big enough to include all the informa-
tion there is about IMDGs, but I can give you the most
important information to get started with. You can read
the book from beginning to end (it shouldn’t take too
long), or you can just jump to whatever chapter inter-
ests you most. Either way, please enjoy!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.oracle.com/us/products/middleware/cloud-app-foundation/coherence/overview/index.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/coherence/overview/index.html
http://www.oracle.com/us/products/middleware/cloud-app-foundation/coherence/overview/index.html

Chapter 1

Identifying Market Drivers

In This Chapter
▶ Understanding changing market factors
▶ Defining today’s tech trends
▶ Discovering why scaling is important
▶ Building scalable systems that offload shared services

C
hange is a constant part of business and has a direct
impact on the technology used to support business.

As data grows and the demand for instant access to
complex business processes increases, the supporting
technology must evolve to keep up. Businesses that
effectively meet these challenges will reap great benefits
while businesses that don’t will suffer.

This chapter examines the changing business market in
terms of how industry trends — such as mobile, cloud,
and the growth in the number of connected devices — are
driving demand for faster, more scalable computer sys-
tems. It also explores why businesses must use fast and
scalable computer systems to provide the data and pro-
cessing needed for a modern, technically savvy, and
impatient consumer.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

4

Understanding What’s
Driving the Market
Today’s consumers are a very demanding and impa-
tient group; they expect a seamless experience from
any website or computer system that they use. As tech-
nology has become easier to use and more widespread,
customers’ expectations have increased. These days,
users expect the following:

 ✓ Constant web access, social media, and mobile
device integration

 ✓ Websites or applications that are quick, responsive,
and always available

 ✓ An intuitive, friendly, and feature-rich user inter-
face (UI)

 ✓ Real-time responsiveness and seamless integration
of applications

 ✓ Immediate access to new products and services
as they become available

Although customer expectations and demands are
technologically challenging to meet, they must be met.
If a website is slow or a sales application is cumber-
some, previously loyal customers won’t hesitate to
move to a competitor in a matter of seconds. By itself,
technology won’t make a poor business idea success-
ful, but without effective technology, many good busi-
ness ideas will not meet their fullest potential.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

5

Architecting for Today’s
Challenges
Information Technology (IT) is a continually evolving
industry, often shaped and sometimes radically redi-
rected by industry trends. Trends often build on each
other and offshoots are common. As the Internet
emerged, it became a place to work, conduct commerce,
and entertain. Mobile devices brought the power of the
Internet to the everyday person with near around-the-
clock access. One could argue that the impact of the
Internet is one of the greatest societal changes in a cen-
tury. However, this change didn’t occur overnight, and it
took considerable architectural design and infrastruc-
ture to make this trend a reality.

Today, devices of all sizes, ranging from credit cards to
household appliances and even to our homes and cars,
are being electronically integrated with each other and
the Internet.

Existing technology that is gaining popularity, such as
mobile devices, social media, cloud computing, and
always-connected devices, requires the management of
large volumes of data from an ever-expanding universe
of highly varied data sources.

Supporting these consumer and device-to-device (often
termed the Internet of Things) trends requires a robust
IT architecture that supports the following:

 ✓ Availability: Infrastructure-supporting devices
must always be available and ready to receive and
process large amounts of data.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

6

 ✓ Connectivity: Devices need to reliably and quickly
connect to the network when data is transferred.

 ✓ Performance: Devices and their communications
must be fast and efficient; delays and bottlenecks
are amplified and customers won’t tolerate them.

 ✓ Security: Devices interacting with every facet of
users’ lives and commerce must be secure or
users won’t adopt them.

 ✓ Scalability: Devices will soon number in the bil-
lions; the supporting infrastructure must support
these vast numbers and be able to process events
from them in real time.

The architecture to support growing use by people
and their devices is taking center stage for IT vendors
and becoming part of the infrastructure required by
everyone.

Why You Want to Scale
Applications
Nothing is more frustrating to customers than trying
to use an application or make a purchase only to see
that application move slowly, freeze, time-out, and ulti-
mately fail.

Customers have been conditioned to expect quick
response time, so if an application is slow, the cus-
tomer may leave the site. For example, during an online
retail sale, customers may abandon their shopping
carts if the site freezes up. Very often, a system is
slow because it wasn’t architected to scale its applica-
tion tier to meet user demand.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

7

Understanding the urgent need
As IT departments are faced with the problem of growing
user demands and their own shrinking budgets, they can
find themselves facing certain challenges when building
new systems or supporting existing systems:

 ✓ Computer systems use shared infrastructure to
ensure that stable and trusted components are
used within the enterprise.

Scaling for success
A harsh lesson in failing to scale is encountered every year by
companies advertising during the Super Bowl, the champion-
ship game of American-style football’s National Football
League (NFL). As you may know, the Super Bowl is known for
offering humorous, clever, and compelling advertising during
its airing. Many people even say they watch the Super Bowl
solely for the commercials. Because of this, large companies
spend millions of dollars on flashy Super Bowl campaigns that
attract viewers to their websites or other properties, only to
find that their computer infrastructure collapses under the
weight of the millions of visitors. Many otherwise successful
Super Bowl commercials have failed to achieve the desired
sales results because the company’s computer infrastructure
couldn’t support the short-lived spike in web traffic. Further, the
social media backlash regarding site failures and application
crashes is immediate, harming the company’s brand. The
window of time to capitalize on a Super Bowl ad campaign (like
many other campaigns) is relatively short. Lacking the capabil-
ity to dynamically meet the increased user demand can impact
immediate sales and longer-lasting brand impressions.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

8

 ✓ Application usage and workload are often difficult
to forecast accurately at the system’s inception.

 ✓ Unpredictable usage spikes and new or changing
requirements are difficult to plan for in advance
with enough lead time to take corrective action.

 ✓ Performance problems within highly specialized
components or databases or infrastructure can be
expensive and time-consuming to correct.

Fortunately, a solution exists where IT can meet the
increasing workload demands while managing costs.
This solution is called scaling. I explore scaling more
fully in subsequent chapters.

Dynamic, Real-Time Systems
Successful systems need to scale rapidly to meet new
and unexpected business needs. Systems should be
designed to scale linearly and dynamically to take advan-
tage of changing requirements and surging demands.
A well-designed system will scale to

 ✓ Provide virtually unlimited processing power and
memory as additional cluster members are added.

 ✓ Expand in real time and dynamically to meet
increasing requirements.

 ✓ Increase capacity in a linear and predictable
manner.

 ✓ Leverage commodity or integrated systems that
are easily added without complexity.

Modern technology supports horizontal scaling by
adding additional nodes “on the fly.” New nodes join
the system dynamically and begin accepting workload

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

9

as soon as they are initialized. This real-time scaling
capability shields users from negative experiences due
to gradual increases in workload and processing spikes.

Offloading Shared Services
Within many systems, retrieving data involves going to
distant, legacy, or undersized mainframes, databases, or
external data sources. Obviously, data must be stored at
rest somewhere (the data tier), but retrieving data for
every request from a performance and processing stand-
point is expensive in time and hard cost. Furthermore,
many of these data stores cannot scale rapidly enough
to meet new workloads nor can they be updated rapidly
to reflect changing business requirements.

System architects design computer systems to leverage
application-tier scaling and incorporate caching to
offload the pertinent data from the data tier to reside at
the application tier. This design relates to the best prac-
tice of keeping live data near the user while reducing the
processing requirements on the data tier. Live data is
the high-usage data that is accessed frequently rather
than historical and seldom-used data that is stored deep
within back-end data stores and databases.

The capability to rapidly provide this live data to the
user is what makes a scalable system fast. For exam-
ple, many applications depend on shared or partner
services that may not be dedicated to the application.
A particular application might use someone’s social
media network preferences to display a certain type of
information or pull up recommendations. Rather than
retrieve that network’s data over and over, it makes
sense to keep partner data in memory for fast access.
This improves the user experience and reduces depen-
dency on the partner system.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

10

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

A Peek at Data Grid Use Cases
and How They Work

In This Chapter
▶ Benefiting by offloading shared services
▶ Scaling applications to handle more users
▶ Providing real-time data to customers

U
nderstanding the key use cases around data grids
is necessary for entire technical teams ranging

from developers and architects to the systems manag-
ers in charge of the resulting applications. When people
understand a technology’s sweet spots, they’re more
likely to effectively implement that technology to its
fullest potential.

This chapter explores key use cases for IMDGs and
takes a peek under the covers of how they operate.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

12

Evolving Challenges
of Scalability
Scaling applications refers to the ways that companies
grow and shrink to meet an increased load, be it from
more users, more data, or new use cases that require
more processing. A system should scale dynamically so
that it can always meet current demands, yet not sit
idly when demand shrinks. An IMDG is horizontally
scalable, meaning that it scales by adding compute
resources.

By contrast, a vertically scalable system limits head-
room. In the Super Bowl example from Chapter 1, where
a company’s sudden exposure creates a demand on its
website that it can’t meet, a vertically scalable design
sets maximum limits to the number of customers that
one system can handle. A horizontal design allows you to
scale beyond that single server. Horizontal design should
consider how to scale all resources, including compute,
network, and memory, so they don’t become bottle-
necks. Today, web, mobile, and cloud applications — as
well as the young Internet of Things phenomenon — are
forcing companies to address how they handle the
increasing volume of application users, and scaling to
process data from those users.

Data centers must now be available and reliable 24/7,
and further growth must be dynamic and automated so
that customers are guaranteed high performance.

IMDG products are designed to alleviate these challenges.
Further, IMDG products such as Oracle Coherence can
provide multi-data-center guarantees for constant avail-
ability of critical applications.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

13

Understanding Offloading
Offloading is a term that reflects the removal of strain
from back-end databases, mainframes, and shared or
partner services. The growth of an application (due to
an increased user base, transactional volume, or data
volume) can cause strain on existing systems.

An example of offloading is when an application origi-
nally designed to get a certain piece of data directly from
a database (such as a hotel room quote from a single
vendor) strains the database connection because a new
user group — such as a new influx of mobile users or a
new geography being served — begins using the applica-
tion over and over to access that same data. This situa-
tion not only slows the results of the database request,
but also strains the infrastructure that the data passes
through, such as a shared web service or a piece of the
application that draws on external data.

IMDG technologies (such as Oracle Coherence) cache
frequently accessed data so that the application doesn’t
need to go all the way back to the database for every
request. The use of offloading also reduces dependen-
cies on external shared services — in the example, an
aggregating provider of hotel quotes— so that if a shared
service is down, its cached data is still available.

Offloading in Action
IMDGs provide a rich set of functionality to offload
shared services. Most IMDGs offer integration with
databases and other data sources so that access to the
back-end data source is transparent to an application.
The application reads the data, and the cache loads the
data from the data source if it isn’t present. Similarly,

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

14

with writes to the cache, IMDGs write data back (asyn-
chronously or synchronously) to the data source, further
offloading by batching writes.

All IMDG products allow you to control expiration and
eviction of cached data. Some IMDG products give you
fine-gain control of these options by allowing you to
refresh ahead before your data expires.

By automatically partitioning data across a set of serv-
ers, IMDG solutions allow full horizontal scalability.
Advanced IMDG solutions provide the ability to dynam-
ically add and remove servers to scale up and down on
demand. In these advanced solutions, backups are
stored on disparate servers, allowing for high availability
(HA) if an individual server or data center crashes.
These HA schemes also prevent workload storms on
your back-end data sources in the event of server failure.

Scaling the Application Tier
Strains on shared services caused by scaling do occur
and must be addressed. Scaling also causes problems
at the application tier. As more users are added to a
system, applications are forced to manage more user
data (such as HTTP session data during an online shop-
ping experience) and more transactions. Applications
also have to manage a growing volume of application
data in addition to user data.

Application servers have several techniques to handle
this scalability challenge, but eventually the complexity
of scaling the application tier and managing the data
becomes too complex without a purpose-built solution.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

15

Leveraging Application
Tier Scaling
Many of the features used to offload shared services are
applicable across all IMDG solutions. The most obvious
challenges that architects face include how to store and
manage a growing amount of data on the application tier
without incurring response-time delays (for example,
because of Java Garbage Collection), how to keep the
data in a growing number of application instances in
sync, and how to avoid each application instance from
making its own calls to shared services. By providing a
virtual data layer, IMDGs make it easy to access data
without having to know where it resides. This means
that applications offload the responsibility of keeping
data caches in sync and virtualizing access to shared
services. Because the data grid is completely scalable,
access times to data remain constant as the data grows.

For clients that make repeated calls to the cache for
the same piece of data, IMDGs allow you to configure a
near cache in the client application. A near cache com-
bines the speed of local data access with a fully scalable
distributed cache. IMDGs manage the task of keeping
near caches in sync with the distributed caches that
sit behind them. For example, consider a large set of
cached read-mostly reference data (maybe a map of
product SKU to descriptions). A small subset of this ref-
erence data may be used quite heavily. The reference
data would reside in a distributed cache for scalability,
but the application clients would declare a near cache
so that frequently accessed reference data would be

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

16

accessible locally. Additionally, many IMDG products
integrate with popular application servers to allow you
to automatically offload HTTP session-state data. By
offloading session-state data, an application-server
instance removes response-time jitter associated with
Java Garbage Collection. This improves performance.

Exploring Real-Time Data
Real-time data is defined by its very name as the ability
to process large amounts of data at real-time speeds.
Although not every application has this requirement,
many industries rely on the quick processing of data
feeds as a competitive advantage.

Financial services companies that need to provide real-
time prices and risk information to their traders and
customers exemplify real-time data. Outdated informa-
tion may negatively impact profits. Calculating price
and risk information is more than a matter of moving
one piece of data from one place to another; instead,
complex calculations may need to be performed based
on an incoming stream of data (in this case, on market
events) and sent downstream to trading applications in
real time.

In another example, the marketplace offers multiple
wearable fitness devices that tie into mobile applications
to track exercise patterns and workout routines. Many of
these devices calculate multiple data points simultane-
ously, such as your heart rate, distance traveled, route
taken, and GPS position. This data is streamed back to a
data center where an application further processes and
enriches the data, for example by comparing it to previ-
ous workouts or those of a group of peers and then
sending those results to a downstream application to

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

17

update social sites or leader boards in real time. Because
of the large volume of streaming calculations that must
be performed, a scalable platform that can perform cal-
culations in parallel is needed.

So, even though caching data in the data grid can
increase speed and improve scalability, processing a
massive amount of real-time transactions demands
more capabilities of IMDGs than simple caching.

Accessing Real-Time Data
in a High-Speed World
Using a simple bank balance problem as a traditional
example, assume that you’ve managed to speed up
access to data by caching customer balance informa-
tion. At this point, a more traditional architecture
would work something like this:

 1. The application server receives an event saying
it’s time to perform a transaction, such as a cus-
tomer who wants to withdraw money from a bank
account.

 2. The application server goes to the cache to retrieve
the balance and any other information needed to
perform the transaction, such as placing a lock on
the data.

 3. The application server then updates the bank bal-
ance and writes the data back to the cache (and
the cache writes the data back to the database).

 4. The application server releases the initial data
lock and lets the user know that the transaction is
complete.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

18

That’s a lot of work for one transaction!

Using IMDGs, this same banking transaction would be
performed like this:

 1. The application server receives the event notifica-
tion that a bank withdrawal is being made and
calls into the data grid to process the transaction
using what is called an entryProcessor.

 2. The transaction is completed, and the user is noti-
fied. No locks are necessary.

Using the data grid entry processor allows the grid to
update the balance in place — and return a result, includ-
ing an indication of whether the transaction succeeded.

Furthermore, you’re no longer moving data around to
process it. This example is about moving bank account
balances, which are small data types, but consider the
benefit if you were moving large documents or files
instead. By moving processing off your application or
web tier, you create a more scalable processing tier
and allow the application and web tier to serve cus-
tomers and manage customer interactions much faster.

IMDGs have the ability to “listen” to cached objects
when they change. By doing so, you can build scalable
systems that respond to state changes and automati-
cally trigger new calculations or processes to be
performed.

Finally, continuing with the banking example, a process
running on the data grid may listen to balance updates
and trigger a real-time promotional offer to customers
if their balances pass a certain threshold.

One issue with real-time systems is the way companies
manage updates to databases in tandem with the need

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

19

to utilize a data cache. If updates occur midstream to
the database from an external source, the IMDG cache
providing real-time processing will suddenly be out of
date. Oracle Coherence provides GoldenGate HotCache
to solve these types of challenges.

Keeping data synchronized with
Oracle GoldenGate HotCache

One of the challenges with using IMDGs with databases is
keeping the data in the IMDG in synch as the underlying
 database is updated. In-memory Data Grids in general pro-
vide mechanisms for updating the database when updates
are made to caches, but dealing with changes made directly
to the database from other applications is more difficult to
handle. Techniques such as expiration or periodic reloads of
the database leave a window when the cache may have stale
data, leading to outdated information delivery. Maintaining
data synchronization between the IMDG and the database
is complex and is difficult to implement using home-grown
programmatic solutions.

Fortunately, Oracle’s IMDG solution (Oracle Coherence) has
tight integration with the Oracle GoldenGate solution (creat-
ing GoldenGate HotCache), allowing changes in a database
to be propagated to the IMDG’s cache. This action keeps the
cache in synch with the underlying database at all times.

You can see in the following figure where Oracle GoldenGate
HotCache is positioned.

(continued)

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

20

As shown, Oracle GoldenGate HotCache is positioned to
maintain up-to-date synchronization between Oracle
Coherence IMDGs and databases. This is a major benefit to
organizations trying to integrate caching solutions into exist-
ing IT infrastructure because it solves a key synchronization
issue where databases are updated directly by applications.
HotCache updates the data grid when a database change is
made — without the need for any programming.

(continued)

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Leveraging the Benefits
of IMDGs

In This Chapter
▶ Gaining the most value from IMDGs
▶ Improving the customer experience
▶ Integrating IMDGs within your existing infrastructure

and preferred toolsets
▶ Seeing how IMDGs can help a business and its

customers

I
n-Memory Data Grids (IMDGs) bring many technical
improvements to a computer system, but knowing

how to incorporate IMDGs into both new and existing
systems is crucial. Identifying the ways to deploy IMDGs
will open many opportunities for a business if the system
architect is aware of the options available. Leveraging
existing infrastructure and taking advantage of IMDG
integration options will allow for an easier and more
effective implementation.

This chapter looks at what it takes to implement IMDGs
and what benefits both the business and its customers
can expect to enjoy.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

22

Lowering Cost and Providing
Better Customer Experience
Leveraging caching and memory-grid technologies has a
direct impact on the customer experience. Specifically,
you can expect implementation of IMDGs to improve

 ✓ Performance: Lessening the time the user waits
for results.

 ✓ Reliability: Reducing the impact of technical fail-
ures on users.

 ✓ Scalability: Increasing processing capacity to
sustain expected growth and protect against
unpredicted usage spikes.

Obviously, improvements in performance, reliability, and
scalability are important, but many technologies promise
to do that, so why use IMDGs? The unique benefits of
IMDGs relate to their application tier deployment:

 ✓ Caching occurs at the application tier where it has
a greater and more noticeable impact on the user.

 ✓ Caching at the application tier with IMDGs is less
expensive than boosting performance on other
tiers.

 ✓ Scaling application middle-tier servers is easier
operationally and far less expensive than attempt-
ing to scale enterprise-level database servers,
mainframes, or partner services.

 Your application may depend on one or more
partner services to satisfy customer requests.
For example, a travel aggregator depends on
hotel, car rental, and airline partners to search
for availability and pricing information on behalf

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

23

of customers. Calling partner web services
makes your customer’s experience dependent
on external variables, such as the web services
availability and responsiveness of your partner.
Your partner may even charge you for using its
web services. In such a case, caching results
from the partner services improves customer
experience and reduces costs.

IMDGs alleviate data growth, scaling, and processing
bottlenecks in a system by caching the most important
data and processing on the application tier. IMDGs also
mask (via fault tolerance) problems that would other-
wise impact the user. Via IMDGs, companies are finding
the least expensive way to provide better end-user
experiences to their customers.

 As the amount of data increases, so must the
ability to process that data increase in an
effective manner.

Providing a Highly Available,
Scalable, and Responsive
Middleware Architecture
Building mission-critical computer systems isn’t easy,
but with proper planning and technology, you can be
successful. Here are some ideas to consider when
building critical systems:

 ✓ Gather firm requirements at the start of the proj-
ect and update the plan as requirements evolve.

 ✓ Consider using technologies built to address the
set of problems you anticipate rather than older
technologies built for different challenges.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

24

 ✓ Select proven technologies supported by vendors
with documented, successful track records.

 ✓ Build security into the system from the start of
the project, not at the end.

 ✓ Ensure that the system will be reliable by designing
fault-tolerance at every level.

 ✓ Implement clustering options at the application and
data tiers to enhance scalability while improving
system reliability.

 ✓ Boost performance by selecting technologies that
are engineered for fast response time.

 ✓ Use tools that promote caching of data at the
application tier to improve performance while
absorbing processing workload from the data tier.

 ✓ Plan for future growth and workload spikes by
selecting technology that scales horizontally and
dynamically to meet demand.

Modern systems have multiple components, and har-
monious integration between components is important.
IMDGs play an important part in ensuring systems that
are fast, reliable, and scalable for end-users.

Integrating IMDGs with
Current Infrastructure
A key driver for IMDGs is their ability to be imple-
mented in your current system with little or no
changes. Obviously, if companies had to rewrite their
entire applications to use IMDGs, the adoption rates of
IMDGs would be very low. First-class IMDGs can be

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

25

implemented into modern applications and support
infrastructures via:

 ✓ Support for multiple programming languages to
include Java, C/C++, .NET, REST (Representational
State Transfer), and JSR-107 (aka JCache)
interfaces.

 ✓ Ability to support myriad application tier compo-
nents and application servers.

 ✓ Simplified integration with multiple database ven-
dors and different data sources on the data tier.
Some database vendors, such as Oracle, provide
products to ease database integration while improv-
ing performance and synchronization.

 ✓ Plug-in availability for popular Integrated Develop-
ment Environments (IDEs) to allow developers to
use tools they already know.

 ✓ Management infrastructure and integration tools
that simplify lifecycle management, from deploy-
ment to monitoring.

Many IMDG products are available that can benefit a
business. However, when evaluating IMDG solutions, be
sure to consider how easily they implement into both
your existing application infrastructure and your pre-
ferred application development technology stack.

Managing Application Server
HTTP Session State in IMDGs
IMDGs reside on the application tier and have the capa-
bility to manage HyperText Transmission Protocol
(HTTP) session state. This allows HTTP sessions to be

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

26

shared and managed across application servers in clus-
tered environments. Using IMDGs to manage HTTP ses-
sion state provides the following benefits:

 ✓ Support more user sessions without adding more
application servers

 ✓ Handle very large sessions efficiently

 ✓ Offload session and application data management
from the application server tier

 ✓ Scale tiers independently

 ✓ Restart and maintain applications and web con-
tainers without losing users’ session data

 ✓ Decouple session management and web containers

The capability to support a higher concurrent user base
is important to companies supporting successful online
businesses. The ideal solution is to leverage IMDGs with
existing web and application server infrastructure to
manage a larger number of concurrent users.

 Many perceived performance problems are actu-
ally scalability problems. As an example, Oracle
encountered a website that supported stream-
ing events to a growing number of users. The
events company found that when too many
users signed up for one event, the event
stream would appear jumpy. Oracle tracked this
issue down to having to manage too much ses-
sion state in each instance of application serv-
ers. The customer decided to use an IMDG to
manage user sessions, using built-in functional-
ity from the IMDG that didn’t require any code
changes in the customer application. Because
application servers were no longer managing

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

27

user sessions, the servers spent less time in gar-
bage collection and were again able to smoothly
stream popular events to a large audience.

Using IMDGs in the Real World
Under what real-world circumstances would IMDGs be
a good choice? The ideal use cases are situations where
a larger number of distributed, concurrent users access
an online system and repeatedly access similar data, in
which users won’t tolerate slowness or failures. Using a
prior example, in this section I review an online travel
and hotel reservation application used by many travel-
ers: Prospective travelers know where they want to
vacation, but the details are often in flux while they
evaluate their options for the best price before commit-
ting to a purchase. Here’s a list of travelers’ website
requirements and how IMDGs can meet them:

 ✓ Consumers, enabled by mobile devices and always-
on broadband connections, access the website
from around the world 24/7.

 ✓ Because the travel service is free, customers use
it when they have no intent on buying. This puts
strain on the website infrastructure, which
increases cost to run it.

 ✓ Consumers may seek to see 100 quotes at a time,
so a single query can result in aggregating a large
number of quotes from a variety of sources.

 ✓ Consumers will search on similar data on compet-
ing websites as they compare flights, hotels, dates,
prices, and promotions to find the deal that fits
their needs the best.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

28

 ✓ A consumer will search many times with different
criteria before committing to a purchase. Consum-
ers often compare options with other competitors.
Their searches may span days or weeks.

 ✓ Performance and system stability is critical.
Attempting to access data directly from each
source without the benefit of caching is far too
slow and prone to failures. If consumers become
frustrated, they’ll go to a competitor.

 ✓ Workload and usage spikes occur as online pro-
motions are offered, special events are advertised,
or seasonal events come up, even something as
simple as summer vacation months.

 ✓ Caching helps insulate online travel systems from
the cost, scalability, availability, and performance
issues of accessing partner services.

IMDGs are a natural fit for any website that provides
access to data to a growing user population, often driven
by mobile or multiple-device access. Cost-effective IMDG
solutions are leveraged to ensure that customers have
an optimal user experience, which directly translates to
increased sales and repeat business.

Oracle integration with Coherence
Oracle provides a broad spectrum of products that effectively
leverage Oracle’s IMDG solution, which is Coherence. Oracle
has multiple products designed to easily integrate with and
optimize Coherence.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

29

Oracle supports the Coherence IMDG solution with:

 ✓ Oracle WebLogic Server (WLS): Coherence supports
HTTP Session State management using WebLogic
Server and also provides simplified lifecycle operations
by using WebLogic container and management fea-
tures. Note: Coherence doesn’t require WebLogic
Server to run.

 ✓ Oracle Applications and Fusion Middleware Products:
Multiple Oracle products, such as PeopleSoft and JD
Edwards, and other products, such as Oracle Event
Processing (OEP) and Oracle Service Bus, integrate
seamlessly with Coherence.

 ✓ Oracle SOA Suite: Oracle’s Service Oriented Software
suite of tools can utilize Coherence.

 ✓ Oracle Exalogic Elastic Cloud: Oracle’s Engineered
System melds hardware and software to optimize
Fusion Middleware products using Coherence.

 ✓ Oracle GoldenGate: Synchronization between the data-
base and Coherence cache is maintained by GoldenGate
HotCache.

 ✓ Oracle TopLink: Provides integration capabilities with
Coherence using the Java Persistence API (JPA).

 ✓ Oracle Enterprise Manager (EM): Administrators can
manage Coherence deployments with the EM suite of
management tools.

 ✓ Oracle Database: Oracle databases integrate with
Coherence-powered applications.

If it looks like there are many Oracle tools that support IMDGs
and specifically Coherence, that’s because there are!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

30

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Understanding Distributed
Caching and In-Memory

Data Grids

In This Chapter
▶ Describing what distributed caching is and why it is

important
▶ Defining In-Memory Data Grids
▶ Explaining the topology of caching architecture
▶ Understanding processing and eventing within

In-Memory Data Grids

C
aching algorithms have long played a role in improv-
ing computer performance, and many computer

systems and programs employ caching methodologies in
one form or another. Within In-Memory Data Grids
(IMDGs), distributed caching is the enabling technology.
Understanding the role of caching is critical to being able
to effectively use IMDGs. This chapter examines how
caching is the foundation of IMDG technology and how
IMDGs work from a technical perspective.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

32

Fundamentals of Caching
People commonly place objects that they need quickly
and/or use frequently near their work areas, staging them
for easy access. Surgeons in operating rooms stage the
tools they need before they start cutting; mechanics get
the tools they need from their toolboxes before they
start to work, and so on. The concept of staging what
you need or will use frequently is analogous in the com-
puting world to caching.

Boosting performance with caching
Because retrieving data from back-end systems and con-
verting it is relatively slow and sometimes expensive,
it’s more effective to keep commonly used data in closer
and much faster memory, rather than going to the back-
end system each time you need to retrieve it. The time
savings of keeping a copy of frequently accessed data in
fast memory rather than making repetitive trips to back-
end systems is measured in orders of magnitude.

Defining In-Memory Data Grids
 IMDGs are defined as middleware software

that manages data objects across multiple
distributed servers in a horizontally scaled
architecture. Specifically, an IMDG is a distrib-
uted cluster of server processes running mid-
dleware software to cache data objects to
assist the application tier with faster, more
reliable processing.

IMDGs provide a shared data cache across distributed
servers to bring data out of remote databases and onto
the application tier where it is closer to the user and
closer to the application procession engines. This

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

33

ensures that the data is available on demand for the
application. Caching and replication algorithms ensure
that the data cached is current and copies of data are
effectively managed between distributed cache servers.

Distributed caching
Although the term caching is broadly used and commonly
understood, distributed caching is a somewhat newer para-
digm. This type of caching indicates that a group of servers
works in unison to share the load of caching all the data. To
a web application, the distributed cache looks like one
system, but behind the scenes, servers can be added to and
removed from the system to meet the data size and through-
put requirements of the application.

As an example, imagine that you’re architecting an upgrade
for a system that supports a large user base; for instance, a
retail bank offering millions of people credit card, checking,
saving, and loan services. Customers log in to your systems
more and more often — driven by mobile banking apps and
easy broadband access. They expect immediate responses.
This extra traffic places a strain on your back-end systems.
Because the amount of data is very large — in many cases
several terabytes — one server can’t handle all the data. This
is a situation where you need a distributed cache.

When you store the frequently accessed data — current bal-
ances, recent transactions, account information — on one
distributed cache, the web applications don’t need to make
multiple calls to various systems every time a user logs in.
Instead, data is available and ready to use immediately.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

34

Several key caching concepts are specific to distributed
caching and IMDGs:

 ✓ Distributed caching and IMDGs cache data objects
that would otherwise come from databases or
other sources, such as other computer systems,
mainframes, web services, and Big Data.

 ✓ Distributed caching and IMDGs cache data objects
on the application tier for faster processing rather
that storing it on the web or presentation tier.

 ✓ Unlike a cache, where you expect data to be evicted
or otherwise lost, many IMDG use cases rely on
never losing data.

 ✓ IMDGs support distributed computing, event-based
applications, and map-reduce style aggregations on
the data grid itself.

 MapReduce is a programming model that uses
distributed computing techniques in a cluster
to process large amounts of data.

Figure 4-1 shows where IMDGs fit in your architecture.

As you can see in Figure 4-1, the IMDG exists on the
application tier and is caching data objects retrieved
from databases, mainframes, and web services. The
IMDG is also holding state, session, and intermediate
live data. Processing of the data objects occurs within
the application tier, which is where the application
logic occurs.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

35

Figure 4-1: In-Memory Data Grids architecture.

 Application servers are the enabling technol-
ogy for the application tier. And IMDGs are
often integrated with application servers. To
be successful, IMDG integration with applica-
tion servers should do the following:

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

36

 ✓ Support a wide range of application technologies
and coding languages.

 ✓ Integrate easily within the application tier.

 ✓ Transparently support the processing on the appli-
cation tier.

Progressive IMDGs are being integrated with a wide
array of middleware products such as enterprise service
busses, Business Process Management (BPM), and so
on. Application server technology is improving, which
will simplify IMDGs and operations management.

Querying Your Cache
Caching provides the greatest performance benefits by
keeping objects in the application-domain format, keep-
ing it physically closer to the application, and by scal-
ing. Leveraging the cache within the IMDGs grid is based
on several fundamental principles:

 ✓ Getting current data locally: IMDGs provide the
flexibility to optimize data access via various cache
topologies, including the capability to keep the
cache local to the application process.

 ✓ Parallel query processing: IMDGs provide a query-
able fabric capable of executing parallel queries
across terabytes of data across hundreds of nodes
in real time. You can spread the workload across
multiple processing nodes and caches.

 ✓ Data must be current and correct: Unlike caches,
IMDGs rely on accurate and complete data to return
consistent query results. IMDGs cannot drop data
or processing, even when cluster members are lost.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

37

IMDGs are engineered to follow these principles to
improve performance and provide data integrity.

Processing and Eventing
Caching is the foundation of IMDGs, but IMDGs also
have two aspects that further enhance performance
capabilities. These aspects are processing and eventing.

Processing
In most modern application architectures, application
processing is done in the application server tier. Even
with a distributed cache, the network between the appli-
cation server and the distributed cache can be over-
whelmed by excessive data movement.

With IMDGs, instead of bringing data objects back
to the application server, you can do the processing
within the memory grid itself rather than moving to
and from the application server tier.

Consider, for example, an eCommerce vendor managing
online shopping carts and inventory. When a user adds
an item to the shopping cart, rather than moving the
shopping cart, pricing, and inventory into the applica-
tion to be processed, the data grid can update total
shopping cart value, check inventory, and recalculate
estimated shipment date and shipment costs without
moving any data around.

Event-based processing
Event-based processing (eventing for short) allows you
to execute a course of action when an object changes
on the data grid. It is closely related to the type of pro-
cessing discussed in the previous section, but happens

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

38

in response to different events. Continuing with the
shopping cart example, when you click the purchase
button, the shopping cart gets marked as purchased,
and listeners cause various actions to happen: fulfilling
the order and perhaps making suggestions for further
purchases.

A more complex example is with electronic trading sys-
tems taking bids (bidding price) and asks (asking price)
for stock trades. Every time the system gets a new bid
or ask, a listener on that object within the memory grid
performs a matching operation to see if the bid and ask
match so that a sale can be made. If a match occurs,
that match triggers further processing of the sale to
occur.

 Data grids are used for this type of eventing
and processing because they provide inher-
ently scalable, fault-tolerant architecture. This
scalability becomes more important as the
number of users and devices grows as users
perform more transactions online, and as users
demand faster responses and grow intolerant
of outages.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Ten (Okay, Eight) Things to
Consider when Adopting

In-Memory Data Grids

In This Chapter
▶ Identifying key items to consider when thinking

about In-Memory Data Grids

T
his chapter highlights important factors that will
impact the success of your In-Memory Data Grid

(IMDG) and your end-users’ experiences.

Ensuring That Your System
Is Suitable for IMDGs
Many middleware applications will benefit from an IMDG,
but some special cases exist in which the benefits won’t
be as pronounced. For example, an IMDG can’t by itself
magically reduce an inherently linear compute-intensive
workload from hours down to minutes, although it could
point you in the direction to make the work parallel,
which would solve the problem. Before beginning an

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

40

IMDG project, examine the architecture of the existing
system to see where IMDGs can be leveraged. No major
undertaking should commence without a careful study,
including an architecture review.

Supporting Distributed
Computing
Distributed computing support is important for IMDGs
deployed to support real-world systems. Deploying
IMDGs across a distributed environment provides mul-
tiple benefits:

 ✓ Bringing live data closer to the applications that
need it for better performance

 ✓ Reducing the amount of data movement during
processing

 ✓ Providing fault tolerance in the event of a local-
ized failure

 ✓ Spreading out the workload processing across
multiple servers

When designing your IMDG architecture, be sure to
account for distributed computing and leverage its
benefits.

Preparing for Special
Sales Events
Is it sufficient to plan only for the average daily workload
and just endure the ramifications of periodic spikes? Or
is it better to over-allocate processing capacity, knowing
that on most days you’re paying for unused capacity?
For many industries, neither option is good.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

41

A better solution is to use technology that can dynami-
cally scale to absorb workload spikes (such as during
Black Friday or the annual online shopping tradition of
Cyber Monday) but shrink after the workload reduces to
normal levels. Rapid provisioning of IMDGs and elastic
cloud computing allow businesses to strike the right bal-
ance, allocating appropriate capacity for normal work-
load with being able to capitalize on surges in demand.

Making a Good First Impression
Studies show that people form lasting impressions of a
company within seconds of navigating its website.
Impressive User Interfaces (UIs) combined with intui-
tive navigation and fast response times give users assur-
ance that they’re dealing with a reputable, professional
company they can trust.

IMDGs can’t make a website more attractive visually or
alter business processes, but they can make sure that
the user has a fast, error-free experience. Preventing a
company from playing damage control because of slow
or error-prone applications yields many dividends to
savvy companies when making their first impression
on customers.

Examining Hardware Choices
When Building Your Cache
Servers used to support horizontal scaling for distrib-
uted caches need to be provisioned rapidly and may
be required in large numbers, but they don’t need to
be overly powerful in terms of individual computing
capacity.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

42

These characteristics make it possible to utilize lower
cost commodity-level servers that can be procured
quickly and inexpensively to join a larger grid or clus-
ter of cache servers.

Although customers can build systems using lower-
cost servers, companies like Oracle take optimizations
further with engineered systems that design hardware
(such as Oracle’s Exalogic) and IMDG technologies
(such as Coherence) to provide speed, availability, and
total cost of ownership (TCO) optimizations that create
a uniquely integrated platform with heightened perfor-
mance, which can’t be realized through use of com-
modity hardware.

Embracing a Single-
System Image
Where the data is actually stored and processed should
be non-applicable to both applications and program-
mers, who don’t need to know or care where data and
processing reside. Well-designed IMDGs make live data
appear local and unified to the application, which doesn’t
need to be concerned with the complexity of the underly-
ing infrastructure.

Applications accessing the data grid don’t need to be
aware of where data is stored across the cluster, and as
partitions and objects are moved, this movement is
transparent to the application. Applications access the
dynamic set of live data that they need and the details
are hidden in the underlying infrastructure of the IMDGs.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

43

Identifying Live Data
Not all of your data is live data, and simply treating all
data as live data is a losing proposition. For example, if
you’re a telecommunications company, you may have 30
million subscribers, only 5 million of whom actively use
your online services. In some cases, it may be accept-
able for some of your infrequent users to have to wait
the first time they log in after six months (as seldom-
used data is retrieved from traditional storage).

By applying an 80/20 rule to determine your critical
requirements, you can realize the benefits of deploying
In-Memory Data Grids more cost-effectively rather than
attempting to provide instant access to infrequent and
relatively lower-value users.

Understanding That
Change Is Here
Right now, you may be facing scalability, offloading, and
processing challenges. And, as mobile device usage,
cloud computing, and the Internet of Things rapidly
gain popularity, your challenges will only grow with
them. Apathy about these industry trends will only
make the problems worse. A different approach, one
that leverages the power of IMDGs, can solve many of
your problems. With IMDGs, you’re in the driver’s seat
and not just reacting and playing catch-up to technol-
ogy changes.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Oracle Special EditionMaking Everything Easier!™

In-Memory Data Grids (IMDGs) bring
data caching and processing to the
application tier to make computer
systems faster, more reliable, and
highly scalable. Data grids allow
companies to meet the evolving
needs of their customers.

•	Understand	performance	
challenges	—	and	why	data	
caching	is	the	solution

•	Enhance	system	availability	
and	scalability	—	with	
clustering	and	a	fault-tolerant	
architecture

•	Keep	customers	happy	—		
and	create	new	ones	by		
giving	users	the	experience	
they	want

Use IMDGs for
increased scalability
and availability!

Oracle engineers hardware and
software to work together in the
cloud and in your data center. For
more information about Oracle
(NYSE:ORCL), visit oracle.com.

In-Memory
Data Grids

Michael Wessler, OCP & CISSP

Open the book
and find:

• How to integrate an
IMDG with your existing
infrastructure

• How to create systems
that scale to meet
workload requirements

• How to create highly
available systems

• Why caching on the
application tier
improves the user
experience

•	Scale	quickly	to	meet		
customer	demand

•	Save	costs	by	offloading	
shared	services

•	Increase	satisfaction	via	fast,	
fault-tolerant	infrastructure

Learn to:

Brought to you by

ISBN: 978-1-118-92141-8
Not for resale

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Chapter 1: Identifying Market Drivers
	Understanding What’s Driving the Market
	Architecting for Today’s Challenges
	Why You Want to Scale Applications
	Dynamic, Real-Time Systems
	Offloading Shared Services

	Chapter 2: A Peek at Data Grid Use Cases and How They Work
	Evolving Challenges of Scalability
	Understanding Offloading
	Offloading in Action
	Scaling the Application Tier
	Leveraging Application Tier Scaling
	Exploring Real-Time Data
	Accessing Real-Time Data in a High-Speed World

	Chapter 3: Leveraging the Benefits of IMDGs
	 Lowering Cost and Providing Better Customer Experience
	Providing a Highly Available, Scalable, and Responsive Middleware Architecture
	Integrating IMDGs with Current Infrastructure
	Managing Application Server HTTP Session State in IMDGs
	Using IMDGs in the Real World

	Chapter 4: Understanding Distributed Caching and In-Memory Data Grids
	Fundamentals of Caching
	Querying Your Cache
	Processing and Eventing

	Chapter 5: Ten (Okay, Eight) Things to Consider when Adopting In-Memory Data Grids
	Ensuring That Your System Is Suitable for IMDGs
	Supporting Distributed Computing
	Preparing for Special Sales Events
	Making a Good First Impression
	Examining Hardware Choices When Building Your Cache
	Embracing a Single-System Image
	Identifying Live Data
	Understanding That Change Is Here

