Geometry Articles
Explanations and practice questions for every line, shape, proof, and ratio you need to know.
Articles From Geometry
Filter Results
Article / Updated 10-26-2022
The volume of an object is how much space the object takes up — or, if you were to drop the object into a full tub of water, how much water would overflow. To calculate the volume of a cylinder, you need to know its height and the area of its base. Because a cylinder is a flat-top figure (a solid with two congruent, parallel bases), the base can be either the top or bottom. If you know a cylinder's height and lateral area, but not its radius, you can use the formula for surface area to find the radius, and then calculate the volume from there. The lateral area of a cylinder is basically one rectangle rolled into a tube shape. Think of the lateral area of a cylinder as one rectangular paper towel that rolls exactly once around a paper towel roll. The base of this rectangle (you know, the part of the towel that wraps around the bottom of the roll) is the same as the circumference of the cylinder's base. And the height of the paper towel is the same as the height of the cylinder. Use this formula to calculate the volume of a cylinder Now for a cylinder problem: Here's a diagram to help you. To use the volume formula, you need the cylinder's height (which you know) and the area of its base. To get the area of the base, you need its radius. And to get the radius, you can use the surface area formula and solve for r: Remember that this "rectangle" is rolled around the cylinder and that the "rectangle's" base is the circumference of the cylinder's circular base. You fill in the equation as follows: Now set the equation equal to zero and factor: The radius can't be negative, so it's 5. Now you can finish with the volume formula: That does it.
View ArticleArticle / Updated 09-16-2022
Using geometry symbols will save time and space when writing proofs, properties, and figuring formulas. The most commonly used geometry symbols and their meanings are shown below.
View ArticleArticle / Updated 07-29-2022
Triangles are classified according to the length of their sides or the measure of their angles. These classifications come in threes, just like the sides and angles themselves. The following are triangle classifications based on sides: Scalene triangle: A triangle with no congruent sides Isosceles triangle: A triangle with at least two congruent sides Equilateral triangle: A triangle with three congruent sides (For the three types of triangles based on the measure of their angles, see the article, “Identifying Triangles by Their Angles.”) Because an equilateral triangle is also isosceles, all triangles are either scalene or isosceles. But when people call a triangle isosceles, they’re usually referring to a triangle with only two equal sides, because if the triangle had three equal sides, they’d call it equilateral. So does this classification scheme involve three types of triangles or only two? You be the judge. Identifying scalene triangles In addition to having three unequal sides, scalene triangles have three unequal angles. The shortest side is across from the smallest angle, the medium side is across from the medium angle, and — surprise, surprise — the longest side is across from the largest angle. The above figure shows an example of a scalene triangle. The ratio of sides doesn’t equal the ratio of angles. Don’t assume that if one side of a triangle is, say, twice as long as another side that the angles opposite those sides are also in a 2 : 1 ratio. The ratio of the sides may be close to the ratio of the angles, but these ratios are never exactly equal (except when the sides are equal). If you’re trying to figure out something about triangles — such as whether an angle bisector also bisects (cuts in half) the opposite side — you can sketch a triangle and see whether it looks true. But the triangle you sketch should be a non-right-angle, scalene triangle (as opposed to an isosceles, equilateral, or right triangle). This is because scalene triangles, by definition, lack special properties such as congruent sides or right angles. If you sketch, say, an isosceles triangle instead, any conclusion you reach may be true only for triangles of this special type. In general, in any area of mathematics, when you want to investigate some idea, you shouldn’t make things more special than they have to be. Identifying isosceles triangles An isosceles triangle has two equal sides (or three, technically) and two equal angles (or three, technically). The equal sides are called legs, and the third side is the base. The two angles touching the base (which are congruent, or equal) are called base angles. The angle between the two legs is called the vertex angle. The above figure shows two isosceles triangles. Identifying equilateral triangles An equilateral triangle has three equal sides and three equal angles (which are each 60°). Its equal angles make it equiangular as well as equilateral. You don’t often hear the expression equiangular triangle, however, because the only triangle that’s equiangular is the equilateral triangle, and everyone calls this triangle equilateral. (With quadrilaterals and other polygons, however, you need both terms, because an equiangular figure, such as a rectangle, can have sides of different lengths, and an equilateral figure, such as a rhombus, can have angles of different sizes.)
View ArticleCheat Sheet / Updated 03-09-2022
Geometry is full of formulas, properties, and theorems. You can become successful in geometry by remembering the most important ones and learning how to apply them. Use this reference sheet as you practice various geometry problems to grow your knowledge and skills.
View Cheat SheetCheat Sheet / Updated 02-08-2022
Successfully understanding and studying geometry involves using strategies for your geometry proofs, knowing important equations, and being able to identify commonly used geometry symbols.
View Cheat SheetArticle / Updated 12-21-2021
On a map, you trace your route and come to a fork in the road. Two diverging roads split from a common point and form an angle. The point at which the roads diverge is the vertex. An angle separates the area around it, known in geometry as a plane, into two regions. The points inside the angle lie in the interior region of the angle, and the points outside the angle lie in the exterior region of the angle. Once you get to know the types of angles and how to measure and create your own, you'll have picked up valuable geometry skills that will help you prove even the most complex geometric puzzles. To do both tasks, you use a protractor, a very useful tool to keep around (see Figure 1). When choosing a protractor, try to find one made of clear plastic. Figuring out the measure of an angle is easier because you can see the line for the angle through the protractor. The breeds of angles Several different angle breeds, or types, exist. You can figure out what breed of angle you have by its measure. The most common measure of an angle is in degrees. Here is a brief introduction to the four types of angles: Right angle. With this angle, you can never go wrong. The right angle is one of the most easily recognizable angles. It's in the form of the letter L, and it makes a square corner (see Figure 2). It has a measure of 90 degrees. Straight angle. You know what? It's actually a straight line. Most people don't even think of this type as an angle, but it is. A straight angle is made up of opposite rays or line segments that have a common endpoint (see Figure 3). This angle has a measure of 180 degrees. Right and straight angles are pretty easy to spot just by looking at them, but never jump to conclusions about the measure of an angle. Being cautious is best. If the info isn't written on the page, don't assume anything. Measure. Acute angle. It's the adorable angle. Actually, it's just a pinch. It's any angle that measures more than 0 degrees but less than 90 degrees. An acute angle falls somewhere between nonexistent and a right angle (see Figure 4). Obtuse angle. This type is just not as exciting as an acute angle. It's measure is somewhere between a right angle and a straight angle (see Figure 5). It is a hill you must climb, a mountain for you to summit. It has a measure of more than 90 degrees but less than 180 degrees. Measuring angles Angles are most commonly measured by degrees, but for those of you who are sticklers for accuracy, even smaller units of measure can be used: minutes and seconds. These kinds of minutes and seconds are like the ones on a clock — a minute is bigger than a second. So think of a degree like an hour, and you've got it down: One degree equals 60 minutes. One minute equals 60 seconds. Before measuring an angle, spec it out and estimate which type you think it is. Is it a right angle? A straight angle? Acute or obtuse? After you estimate it, then measure the angle. Follow these steps: Place the notch or center point of your protractor at the point where the sides of the angle meet (the vertex). Place the protractor so that one of the lines of the angle you want to measure reads zero (that's actually 0°). Using the zero line isn't necessary because you can measure an angle by getting the difference in the degree measures of one line to the other. It's easier, however, to measure the angle when one side of it is on the zero line. Having one line on the zero line allows you to read the measurement directly off the protractor without having to do more math. (But if you're up for the challenge, knock yourself out.) Read the number off the protractor where the second side of the angle meets the protractor. Some more advice: Make sure that your measure is close to your estimate. Doing so tells you whether you chose the proper scale. If you were expecting an acute angle measure but got a seriously obtuse measure, you need to rethink the scale you used. Try the other one. If the sides of your angle don't reach the scale of your protractor, extend them so that they do. Doing so increases the accuracy of your measure. Remember that the measure of an angle is always a positive number. So what do you do if your angle doesn't quite fit on the protractor's scale? Look at Figure 6 for an example. The angle in this figure has a measure of greater than 180°. Now what? Sorry, but in this case, you're going to have to expend a little extra energy. Yes, you have to do some math. These angles are known as reflex angles and they have a measure of greater than 180°. Draw a line so that you have a straight line (see the extended dots on Figure 6). The measure of this portion of the angle is 180° because it's a straight angle. Now measure the angle that is formed by the extension line you just made and the second side of the original angle you want to measure. (If you get confused, just look at Figure 6.) Once you have the measure of the second angle, add that number to 180. The result is the total number of degrees of the angle. In Figure 6, 180° + 45° = 225°.
View ArticleArticle / Updated 09-17-2021
A circle's central angles and the arcs that they cut out are part of many circle proofs. They also come up in many area problems. The following figure shows how an angle and an arc are interrelated. Arc: An arc is simply a curved piece of a circle. Any two points on a circle divide the circle into two arcs: a minor arc (the smaller piece) and a major arc (the larger)—unless the points are the endpoints of a diameter, in which case both arcs are semicircles. Note that to name a minor arc, you use its two endpoints; to name a major arc, you use its two endpoints plus any point along the arc. Central angle: A central angle is an angle whose vertex is at the center of a circle. The two sides of a central angle are radii that hit the circle at the opposite ends of an arc—or as mathematicians say, the angle intercepts the arc. The measure of an arc is the same as the degree measure of the central angle that intercepts it. Determining the length of an arc An arc’s length means the same commonsense thing length always means — you know, like the length of a piece of string (with an arc, of course, it’d be a curved piece of string). Make sure you don’t mix up arc length with the measure of an arc which is the degree size of its central angle. A circle is 360° all the way around; therefore, if you divide an arc’s degree measure by 360°, you find the fraction of the circle’s circumference that the arc makes up. Then, if you multiply the length all the way around the circle (the circle’s circumference) by that fraction, you get the length along the arc. So finally, here’s the formula you’ve been waiting for. Arc length: Its degree measure is 45° and the radius of the circle is 12, so here’s the math for its length: Pretty simple, eh?
View ArticleArticle / Updated 07-12-2021
There are five ways in which you can prove that a quadrilateral is a parallelogram. The first four are the converses of parallelogram properties (including the definition of a parallelogram). Make sure you remember the oddball fifth one — which isn’t the converse of a property — because it often comes in handy: If both pairs of opposite sides of a quadrilateral are parallel, then it’s a parallelogram (reverse of the definition). If both pairs of opposite sides of a quadrilateral are congruent, then it’s a parallelogram (converse of a property). Tip: To get a feel for why this proof method works, take two toothpicks and two pens or pencils of the same length and put them all together tip-to-tip; create a closed figure, with the toothpicks opposite each other. The only shape you can make is a parallelogram. If both pairs of opposite angles of a quadrilateral are congruent, then it’s a parallelogram (converse of a property). If the diagonals of a quadrilateral bisect each other, then it’s a parallelogram (converse of a property). Tip: Take, say, a pencil and a toothpick (or two pens or pencils of different lengths) and make them cross each other at their midpoints. No matter how you change the angle they make, their tips form a parallelogram. If one pair of opposite sides of a quadrilateral are both parallel and congruent, then it’s a parallelogram (neither the reverse of the definition nor the converse of a property). Tip: Take two pens or pencils of the same length, holding one in each hand. If you keep them parallel, no matter how you move them around, you can see that their four ends form a parallelogram. The preceding list contains the converses of four of the five parallelogram properties. If you’re wondering why the converse of the fifth property (consecutive angles are supplementary) isn’t on the list, you have a good mind for details. The explanation, essentially, is that the converse of this property, while true, is difficult to use, and you can always use one of the other methods instead.
View ArticleArticle / Updated 07-09-2021
A trapezoid is a quadrilateral (a shape with four sides) with exactly one pair of parallel sides (the parallel sides are called bases). The following figure shows a trapezoid to the left, and an isosceles trapezoid on the right. The properties of the trapezoid are as follows: The bases are parallel by definition. Each lower base angle is supplementary to the upper base angle on the same side. The properties of the isosceles trapezoid are as follows: The properties of a trapezoid apply by definition (parallel bases). The legs are congruent by definition. The lower base angles are congruent. The upper base angles are congruent. Any lower base angle is supplementary to any upper base angle. The diagonals are congruent. The supplementary angles might be the hardest property to spot in the diagrams above. Because of the parallel sides, consecutive angles are same-side interior angles and are thus supplementary. (All the special quadrilaterals except the kite, by the way, contain consecutive supplementary angles.) Here’s an isosceles trapezoid proof for you: Statement 1: Reason for statement 1: Given. Statement 2: Reason for statement 2: The legs of an isosceles trapezoid are congruent. Statement 3: Reason for statement 3: The upper base angles of an isosceles trapezoid are congruent. Statement 4: Reason for statement 4: Reflexive Property. Statement 5: Reason for statement 5: Side-Angle-Side, or SAS (2, 3, 4) Statement 6: Reason for statement 6: CPCTC (Corresponding Parts of Congruent Triangles are Congruent). Statement 7: Reason for statement 7: If angles are congruent, then so are sides.
View ArticleArticle / Updated 07-08-2021
Everything you need to know about a polygon doesn’t necessarily fall within its sides. You may need to find exterior angles as well as interior angles when working with polygons: Interior angle: An interior angle of a polygon is an angle inside the polygon at one of its vertices. Angle Q is an interior angle of quadrilateral QUAD. Exterior angle: An exterior angle of a polygon is an angle outside the polygon formed by one of its sides and the extension of an adjacent side. Interior and exterior angle formulas: The sum of the measures of the interior angles of a polygon with n sides is (n – 2)180. The measure of each interior angle of an equiangular n-gon is If you count one exterior angle at each vertex, the sum of the measures of the exterior angles of a polygon is always 360°. Check here for more practice.
View Article